Hierarchical Bayesian Inversion of Global Variables and Large-Scale Spatial Fields

被引:7
|
作者
Wang, Lijing [1 ]
Kitanidis, Peter K. [2 ]
Caers, Jef [1 ]
机构
[1] Stanford Univ, Dept Geol Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
关键词
hierarchical Bayesian formulation; machine learning-based inversion; local principal component analysis; hyperparameters uncertainty; large-scale spatial fields inversion; COMPONENT GEOSTATISTICAL APPROACH; UNCERTAINTY QUANTIFICATION; SENSITIVITY-ANALYSIS; DATA ASSIMILATION; MATLAB TOOLBOX; MONTE; PARAMETERIZATION; ALGORITHM; INFERENCE; EFFICIENT;
D O I
10.1029/2021WR031610
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bayesian inversion is commonly applied to quantify uncertainty of hydrological variables. However, Bayesian inversion is usually focused on spatial hydrological properties instead of hyperparameters or non-gridded physical global variables. In this paper, we present a hierarchical Bayesian framework to quantify uncertainty of both global and spatial variables. We estimate first the posterior of global variables and then hierarchically estimate the posterior of the spatial field. We propose a machine learning-based inversion method to estimate the joint distribution of data and global variables directly without introducing a statistical likelihood. We also propose a new local dimension reduction method: local principal component analysis (local PCA) to update large-scale spatial fields with local data more efficiently. We illustrate the hierarchical Bayesian formulation with three case studies: one with a linear forward model (volume averaging inversion) and two with non-linear forward models (pumping tests and hydraulic head measurements), including a 3D case. Results show that quantifying global variables uncertainty is critical for assessing uncertainty on predictions. We show how the local PCA approach accelerates the inversion process. Furthermore, we provide an open-source Python package () on the hierarchical Bayesian framework including three case studies.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Linking Climate Variables to Large-Scale Spatial Pattern and Risk of Citrus Huanglongbing: A Hierarchical Bayesian Modeling Approach
    Alves, Kaique S.
    Rothmann, Lisa A.
    Del Ponte, Emerson M.
    PHYTOPATHOLOGY, 2022, 112 (01) : 189 - 196
  • [2] Bayesian inverse modeling of large-scale spatial fields on iteratively corrected principal components
    Zhao, Yue
    Luo, Jian
    ADVANCES IN WATER RESOURCES, 2021, 151
  • [3] Large-scale stochastic linear inversion using hierarchical matrices
    Ambikasaran, Sivaram
    Li, Judith Yue
    Kitanidis, Peter K.
    Darve, Eric
    COMPUTATIONAL GEOSCIENCES, 2013, 17 (06) : 913 - 927
  • [4] Hierarchical Bayesian Inference and Recursive Regularization for Large-Scale Classification
    Gopal, Siddharth
    Yang, Yiming
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2015, 9 (03)
  • [5] Learning hierarchical Bayesian networks for large-scale data analysis
    Hwang, Kyu-Baek
    Kim, Byoung-Hee
    Zhang, Byoung-Tak
    NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2006, 4232 : 670 - 679
  • [6] Bayesian hierarchical model for large-scale covariance matrix estimation
    Zhu, Dongxiao
    Hero, Alfred O., III
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2007, 14 (10) : 1311 - 1326
  • [7] Hierarchical Causal Discovery From Large-Scale Observed Variables
    Shen, Rujia
    Li, Muhan
    Zhao, Chao
    Wang, Boran
    Guan, Yi
    Liu, Jie
    Jiang, Jingchi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (05) : 2626 - 2639
  • [8] Bivariate DeepKriging for Large-Scale Spatial Interpolation of Wind Fields
    Nag, Pratik
    Sun, Ying
    Reich, Brian J.
    TECHNOMETRICS, 2025,
  • [9] Large-scale Bayesian spatial modelling of air pollution for policy support
    Shaddick, Gavin
    Yan, Haojie
    Salway, Ruth
    Vienneau, Danielle
    Kounali, Daphne
    Briggs, David
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (04) : 777 - 794
  • [10] Large-Scale Seismic Inversion Framework
    Krischer, Lion
    Fichtner, Andreas
    Zukauskaite, Saule
    Igel, Heiner
    SEISMOLOGICAL RESEARCH LETTERS, 2015, 86 (04) : 1198 - 1207