Scaling and Diabatic Effects in Quantum Annealing with a D-Wave Device

被引:53
|
作者
Weinberg, Phillip [1 ]
Tylutki, Marek [2 ,3 ]
Ronkko, Jami M. [4 ]
Westerholm, Jan [5 ]
Astrom, Jan A. [4 ]
Manninen, Pekka [4 ]
Torma, Paivi [2 ]
Sandvik, Anders W. [1 ,6 ,7 ]
机构
[1] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[2] Aalto Univ, Dept Appl Phys, Sch Sci, FI-00076 Aalto, Finland
[3] Warsaw Univ Technol, Fac Phys, Ulica Koszykowa 75, PL-00662 Warsaw, Poland
[4] CSC IT Ctr Sci, POB 405, FIN-02101 Espoo, Finland
[5] Abo Akad Univ, Fac Sci & Engn, Vattenborgsvagen 3, FI-20500 Turku, Finland
[6] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[7] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
欧洲研究理事会; 芬兰科学院;
关键词
PHASE-TRANSITION; DYNAMICS; SIMULATIONS; COLLOQUIUM; ATOMS;
D O I
10.1103/PhysRevLett.124.090502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss quantum annealing of the two-dimensional transverse-field Ising model on a D-Wave device, encoded on L x L lattices with L <= 32. Analyzing the residual energy and deviation from maximal magnetization in the final classical state, we find an optimal L dependent annealing rate v for which the two quantities are minimized. The results are well described by a phenomenological model with two powers of v and L-dependent prefactors to describe the competing effects of reduced quantum fluctuations (for which we see evidence of the Kibble-Zurek mechanism) and increasing noise impact when v is lowered. The same scaling form also describes results of numerical solutions of a transverse-field Ising model with the spins coupled to noise sources. We explain why the optimal annealing time is much longer than the coherence time of the individual qubits.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Solving Quantum Chemistry Problems with a D-Wave Quantum Annealer
    Streif, Michael
    Neukart, Florian
    Leib, Martin
    QUANTUM TECHNOLOGY AND OPTIMIZATION PROBLEMS, 2019, 11413 : 111 - 122
  • [42] Disorder effects at a nematic quantum critical point in d-wave cuprate superconductors
    Wang, Jing
    Liu, Guo-Zhu
    Kleinert, Hagen
    PHYSICAL REVIEW B, 2011, 83 (21)
  • [43] A holographic model of d-wave superconductor vortices with Lifshitz scaling
    Guo, Hong
    Shu, Fu-Wen
    Chen, Jing-He
    Li, Hui
    Yu, Ze
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (02):
  • [44] Quantum point contact spectroscopy of d-wave superconductors
    Takagaki, Y
    Ploog, KH
    PHYSICAL REVIEW B, 1999, 60 (13): : 9750 - 9754
  • [45] A Study of Spanning Trees on a D-Wave Quantum Computer
    Hall, J. S.
    Novotny, M. A.
    Neuhaus, T.
    Michielsen, Kristel
    PROCEEDINGS OF THE 28TH WORKSHOP ON COMPUTER SIMULATION STUDIES IN CONDENSED MATTER PHYSICS (CSP2015), 2015, 68 : 56 - 60
  • [46] Quantum interference of a Zn impurity in d-wave superconductors
    Chen, Hong-Yi
    Zhu, Lingyin
    Ting, C. S.
    PHYSICAL REVIEW B, 2006, 73 (17):
  • [47] In Situ Noise Characterization of the D-Wave Quantum Annealer
    Zaborniak, Tristan
    de Sousa, Rogerio
    IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20), 2020, : 409 - 412
  • [48] Macroscopic quantum tunneling in d-wave superconductor Josephson
    Kawabata, S
    Kashiwaya, S
    Asano, Y
    Tanaka, Y
    Realizing Controllable Quantum States: MESOSCOPIC SUPERCONDUCTIVITY AND SPINTRONICS, 2005, : 173 - 178
  • [49] Finding Maximum Cliques on the D-Wave Quantum Annealer
    Chapuis, Guillaume
    Djidjev, Hristo
    Hahn, Georg
    Rizk, Guillaume
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2019, 91 (3-4): : 363 - 377
  • [50] Analyzing D-Wave Quantum Macro Assembler Security
    Alsaadi, Hesham H.
    Aldwairi, Monther
    Mueller-Stuler, Eva-Marie
    16TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY-NEW GENERATIONS (ITNG 2019), 2019, 800 : 125 - 132