Scaling and Diabatic Effects in Quantum Annealing with a D-Wave Device

被引:53
|
作者
Weinberg, Phillip [1 ]
Tylutki, Marek [2 ,3 ]
Ronkko, Jami M. [4 ]
Westerholm, Jan [5 ]
Astrom, Jan A. [4 ]
Manninen, Pekka [4 ]
Torma, Paivi [2 ]
Sandvik, Anders W. [1 ,6 ,7 ]
机构
[1] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[2] Aalto Univ, Dept Appl Phys, Sch Sci, FI-00076 Aalto, Finland
[3] Warsaw Univ Technol, Fac Phys, Ulica Koszykowa 75, PL-00662 Warsaw, Poland
[4] CSC IT Ctr Sci, POB 405, FIN-02101 Espoo, Finland
[5] Abo Akad Univ, Fac Sci & Engn, Vattenborgsvagen 3, FI-20500 Turku, Finland
[6] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[7] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
欧洲研究理事会; 芬兰科学院;
关键词
PHASE-TRANSITION; DYNAMICS; SIMULATIONS; COLLOQUIUM; ATOMS;
D O I
10.1103/PhysRevLett.124.090502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss quantum annealing of the two-dimensional transverse-field Ising model on a D-Wave device, encoded on L x L lattices with L <= 32. Analyzing the residual energy and deviation from maximal magnetization in the final classical state, we find an optimal L dependent annealing rate v for which the two quantities are minimized. The results are well described by a phenomenological model with two powers of v and L-dependent prefactors to describe the competing effects of reduced quantum fluctuations (for which we see evidence of the Kibble-Zurek mechanism) and increasing noise impact when v is lowered. The same scaling form also describes results of numerical solutions of a transverse-field Ising model with the spins coupled to noise sources. We explain why the optimal annealing time is much longer than the coherence time of the individual qubits.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] d-Wave superconductors and quantum computers
    Zagoskin, AM
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2002, 368 (1-4): : 305 - 309
  • [22] Scaling of the quasiparticle spectrum for d-wave superconductors - Comment
    Volovik, GE
    Kopnin, NB
    PHYSICAL REVIEW LETTERS, 1997, 78 (26) : 5028 - 5028
  • [23] Quantum machine learning with D-wave quantum computer
    Hu, Feng
    Wang, Ban-Nan
    Wang, Ning
    Wang, Chao
    Quantum Engineering, 2019, 1 (02)
  • [24] Scaling of the quasiparticle spectrum for d-wave superconductors - Reply
    Simon, SH
    Lee, PA
    PHYSICAL REVIEW LETTERS, 1997, 78 (26) : 5029 - 5029
  • [25] Quantum computing cryptography: Finding cryptographic Boolean functions with quantum annealing by a 2000 qubit D-wave quantum computer
    Hu, Feng
    Lamata, Lucas
    Sanz, Mikel
    Chen, Xi
    Chen, Xingyuan
    Wang, Chao
    Solano, Enrique
    PHYSICS LETTERS A, 2020, 384 (10)
  • [26] Benchmarking D-Wave Quantum Annealers: Spectral Gap Scaling of Maximum Cardinality Matching Problems
    McLeod, Cameron Robert
    Sasdelli, Michele
    COMPUTATIONAL SCIENCE, ICCS 2022, PT IV, 2022, : 150 - 163
  • [27] Distributed Quantum Annealing on D-Wave for the Single Machine Total Weighted Tardiness Scheduling Problem
    Bozejko, Wojciech
    Pempera, Jaroslaw
    Uchronski, Mariusz
    Wodecki, Mieczyslaw
    COMPUTATIONAL SCIENCE, ICCS 2022, PT IV, 2022, : 171 - 178
  • [28] Prospects for quantum enhancement with diabatic quantum annealing
    E. J. Crosson
    D. A. Lidar
    Nature Reviews Physics, 2021, 3 : 466 - 489
  • [29] Prospects for quantum enhancement with diabatic quantum annealing
    Crosson, E. J.
    Lidar, D. A.
    NATURE REVIEWS PHYSICS, 2021, 3 (07) : 466 - 489
  • [30] Disorder and quantum criticality in d-wave superconductors
    Meyer, JS
    Gornyi, IV
    Altland, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (07): : 949 - 959