Machine Learning in Chemical Dynamics

被引:5
|
作者
Biswas, Rupayan [1 ]
Rashmi, Richa [1 ]
Lourderaj, Upakarasamy [1 ]
机构
[1] HBNI, Sch Chem Sci, Natl Inst Sci Educ & Res, Jatni PO Khurdha, Bhubaneswar, Odisha, India
来源
关键词
Machine learning; neural networks; Gaussian process for regression; potential energy surface;
D O I
10.1007/s12045-019-0922-1
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Machine learning has been applied to various fields and is envisaged as the technology of the future. We discuss here, the applications of machine learning methods to represent potential energy surfaces - an important aspect of chemical dynamics. We illustrate the process of machine learning using simple examples, and demonstrate how it can be extended to complicated problems.
引用
收藏
页码:59 / 75
页数:17
相关论文
共 50 条
  • [21] Machine learning for protein folding and dynamics
    Noe, Frank
    De Fabritiis, Gianni
    Clementi, Cecilia
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2020, 60 : 77 - 84
  • [22] Molecular Dynamics and Machine Learning in Catalysts
    Liu, Wenxiang
    Zhu, Yang
    Wu, Yongqiang
    Chen, Cen
    Hong, Yang
    Yue, Yanan
    Zhang, Jingchao
    Hou, Bo
    CATALYSTS, 2021, 11 (09)
  • [23] Machine learning applied to asteroid dynamics
    Carruba, V
    Aljbaae, S.
    Domingos, R. C.
    Huaman, M.
    Barletta, W.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2022, 134 (04):
  • [24] Roadmap on machine learning glassy dynamics
    Jung, Gerhard
    Alkemade, Rinske M.
    Bapst, Victor
    Coslovich, Daniele
    Filion, Laura
    Landes, Francois P.
    Liu, Andrea J.
    Pezzicoli, Francesco Saverio
    Shiba, Hayato
    Volpe, Giovanni
    Zamponi, Francesco
    Berthier, Ludovic
    Biroli, Giulio
    NATURE REVIEWS PHYSICS, 2025, 7 (02) : 91 - 104
  • [25] Machine Learning with and for Molecular Dynamics Simulations
    Riniker, Sereina
    Wang, Shuzhe
    Bleiziffer, Patrick
    Boeselt, Lennard
    Esposito, Carmen
    CHIMIA, 2019, 73 (12) : 1024 - 1027
  • [26] Keystroke dynamics and quantum machine learning
    Bhasin, Namisha
    Sharma, Sanjay Kumar
    Mishra, Rajesh
    INTERNATIONAL JOURNAL OF BIOMETRICS, 2025, 17 (1-2) : 132 - 150
  • [27] Machine learning for prediction with missing dynamics
    Harlim, John
    Jiang, Shixiao W.
    Liang, Senwei
    Yang, Haizhao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 428
  • [28] Significance of the Chemical Environment of an Element in Nonadiabatic Molecular Dynamics: Feature Selection and Dimensionality Reduction with Machine Learning
    Bin How, Wei
    Wang, Bipeng
    Chu, Weibin
    Tkatchenko, Alexandre
    V. Prezhdo, Oleg
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (50): : 12026 - 12032
  • [29] Applications of Machine Learning in Chemical and Biological Oceanography
    Sadaiappan, Balamurugan
    Balakrishnan, Preethiya
    Vishal, C. R.
    Vijayan, Neethu T.
    Subramanian, Mahendran
    Gauns, Mangesh U.
    ACS OMEGA, 2023, 8 (18): : 15831 - 15853
  • [30] Application of Machine Learning in Chemical Synthesis and Characterization
    Sun J.
    Li Z.
    Zhang S.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2023, 57 (10): : 1231 - 1244