Machine Learning with and for Molecular Dynamics Simulations

被引:6
|
作者
Riniker, Sereina [1 ]
Wang, Shuzhe [1 ]
Bleiziffer, Patrick [1 ]
Boeselt, Lennard [1 ]
Esposito, Carmen [1 ]
机构
[1] Swiss Fed Inst Technol, Lab Phys Chem, Vladimir Prelog Weg 2, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Machine learning; Molecular dynamics; MARKOV STATE MODELS; WATER DISTRIBUTION COEFFICIENTS; AQUEOUS SOLUBILITY; FORCE-FIELD; PREDICTION; CHEMOINFORMATICS; ZINC;
D O I
10.2533/chimia.2019.1024
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
From simple clustering techniques to more sophisticated neural networks, the use of machine learning has become a valuable tool in many fields of chemistry in the past decades. Here, we describe two different ways in which we explore the combination of machine learning (ML) and molecular dynamics (MD) simulations. One topic focuses on how the information in MD simulations can be encoded such that it can be used as input to train ML models for the quantitative understanding of molecular systems. The second topic addresses the utilization of machine learning to improve the set-up, interpretation, as well as accuracy of MD simulations.
引用
收藏
页码:1024 / 1027
页数:4
相关论文
共 50 条
  • [1] Reactive molecular dynamics simulations and machine learning
    Krishnamoorthy, Aravind
    Rajak, Pankaj
    Hong, Sungwook
    Nomura, Ken-ichi
    Tiwari, Subodh
    Kalia, Rajiv K.
    Nakano, Aiichiro
    Vashishta, Priya
    [J]. METANANO 2019, 2020, 1461
  • [2] Machine Learning for Performance Enhancement of Molecular Dynamics Simulations
    Kadupitiya, J. C. S.
    Fox, Geoffrey C.
    Jadhao, Vikram
    [J]. COMPUTATIONAL SCIENCE - ICCS 2019, PT II, 2019, 11537 : 116 - 130
  • [3] Molecular Dynamics Simulations on Cloud Computing and Machine Learning Platforms
    Sharma, Prateek
    Jadhao, Vikram
    [J]. 2021 IEEE 14TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD 2021), 2021, : 751 - 753
  • [4] Machine learning surrogates for molecular dynamics simulations of soft materials
    Kadupitiya, J. C. S.
    Sun, Fanbo
    Fox, Geoffrey
    Jadhao, Vikram
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 42
  • [5] Machine learning approaches for analyzing and enhancing molecular dynamics simulations
    Wang, Yihang
    Ribeiro, Joao Marcelo Lamim
    Tiwary, Pratyush
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2020, 61 : 139 - 145
  • [6] Machine Learning for Accurate Force Calculations in Molecular Dynamics Simulations
    Pattnaik, Punyaslok
    Raghunathan, Shampa
    Kalluri, Tarun
    Bhimalapuram, Prabhakar
    Jawahar, C., V
    Priyakumar, U. Deva
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (34): : 6954 - 6967
  • [7] Machine learning for analysing ab initio molecular dynamics simulations
    Hase, Florian
    Galvan, Ignacio Fdez
    Aspuru-Guzik, Alan
    Lindh, Roland
    Vacher, Morgane
    [J]. 31ST INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC XXXI), 2020, 1412
  • [8] Machine learning heralding a new development phase in molecular dynamics simulations
    Prasnikar, Eva
    Ljubic, Martin
    Perdih, Andrej
    Borisek, Jure
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (04)
  • [9] Machine learning heralding a new development phase in molecular dynamics simulations
    Eva Prašnikar
    Martin Ljubič
    Andrej Perdih
    Jure Borišek
    [J]. Artificial Intelligence Review, 57
  • [10] NNP/MM: Accelerating Molecular Dynamics Simulations with Machine Learning Potentials and Molecular Mechanics
    Galvelis, Raimondas
    Varela-Rial, Alejandro
    Doerr, Stefan
    Fino, Roberto
    Eastman, Peter
    Markland, Thomas E.
    Chodera, John D.
    De Fabritiis, Gianni
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (18) : 5701 - 5708