Machine Learning with and for Molecular Dynamics Simulations

被引:6
|
作者
Riniker, Sereina [1 ]
Wang, Shuzhe [1 ]
Bleiziffer, Patrick [1 ]
Boeselt, Lennard [1 ]
Esposito, Carmen [1 ]
机构
[1] Swiss Fed Inst Technol, Lab Phys Chem, Vladimir Prelog Weg 2, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Machine learning; Molecular dynamics; MARKOV STATE MODELS; WATER DISTRIBUTION COEFFICIENTS; AQUEOUS SOLUBILITY; FORCE-FIELD; PREDICTION; CHEMOINFORMATICS; ZINC;
D O I
10.2533/chimia.2019.1024
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
From simple clustering techniques to more sophisticated neural networks, the use of machine learning has become a valuable tool in many fields of chemistry in the past decades. Here, we describe two different ways in which we explore the combination of machine learning (ML) and molecular dynamics (MD) simulations. One topic focuses on how the information in MD simulations can be encoded such that it can be used as input to train ML models for the quantitative understanding of molecular systems. The second topic addresses the utilization of machine learning to improve the set-up, interpretation, as well as accuracy of MD simulations.
引用
收藏
页码:1024 / 1027
页数:4
相关论文
共 50 条
  • [21] Predicting Molecular Photochemistry Using Machine-Learning-Enhanced Quantum Dynamics Simulations
    Richings, Gareth W.
    Habershon, Scott
    ACCOUNTS OF CHEMICAL RESEARCH, 2022, 55 (02) : 209 - 220
  • [22] Automating collective variable discovery from molecular dynamics simulations using machine learning
    Chittor, Achala
    Kolb, Sabrina
    Stockbridge, Randy
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 117A - 117A
  • [23] Advancing tribological simulations of carbon-based lubricants with active learning and machine learning molecular dynamics
    Pacini, Alberto
    Ferrario, Mauro
    Loehle, Sophie
    Righi, M. Clelia
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (06):
  • [24] Molecular dynamics machine: Special-purpose computer for molecular dynamics simulations
    Narumi, E
    Susukita, R
    Ebisuzaki, T
    McNiven, G
    Elmegreen, B
    MOLECULAR SIMULATION, 1999, 21 (5-6) : 401 - 415
  • [25] Molecular Dynamics and Machine Learning in Catalysts
    Liu, Wenxiang
    Zhu, Yang
    Wu, Yongqiang
    Chen, Cen
    Hong, Yang
    Yue, Yanan
    Zhang, Jingchao
    Hou, Bo
    CATALYSTS, 2021, 11 (09)
  • [26] Implementation of the force decomposition machine for molecular dynamics simulations
    Borstnik, Urban
    Miller, Benjamin T.
    Brooks, Bernard R.
    Janezic, Dusanka
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2012, 38 : 243 - 247
  • [27] Silicon phase transitions in nanoindentation: Advanced molecular dynamics simulations with machine learning phase recognition
    Ge, Guojia
    Rovaris, Fabrizio
    Lanzoni, Daniele
    Barbisan, Luca
    Tang, Xiaobin
    Miglio, Leo
    Marzegalli, Anna
    Scalise, Emilio
    Montalenti, Francesco
    ACTA MATERIALIA, 2024, 263
  • [28] Machine-Learning Based Stacked Ensemble Model for Accurate Analysis of Molecular Dynamics Simulations
    Singh, Samrendra K.
    Bejagam, Karteek K.
    An, Yaxin
    Deshmukh, Sanket A.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (24): : 5190 - 5198
  • [29] Predicting glass transition temperature of polymers by combining molecular dynamics simulations and machine learning techniques
    Zhan, Siqi
    Huang, Wanhui
    Dong, Caibo
    Chen, Qionghai
    Zhao, Hengheng
    Duan, Pengwei
    Hu, Anwen
    Li, Qian
    Li, Ying
    Liu, Jun
    Zhang, Liqun
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [30] Modelling the dynamic physical properties of vulcanised polymer models by molecular dynamics simulations and machine learning
    Yoshida, Kohei
    Kanematsu, Yusuke
    Rocabado, David S. Rivera
    Ishimoto, Takayoshi
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 221