Machine Learning in Chemical Dynamics

被引:5
|
作者
Biswas, Rupayan [1 ]
Rashmi, Richa [1 ]
Lourderaj, Upakarasamy [1 ]
机构
[1] HBNI, Sch Chem Sci, Natl Inst Sci Educ & Res, Jatni PO Khurdha, Bhubaneswar, Odisha, India
来源
关键词
Machine learning; neural networks; Gaussian process for regression; potential energy surface;
D O I
10.1007/s12045-019-0922-1
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Machine learning has been applied to various fields and is envisaged as the technology of the future. We discuss here, the applications of machine learning methods to represent potential energy surfaces - an important aspect of chemical dynamics. We illustrate the process of machine learning using simple examples, and demonstrate how it can be extended to complicated problems.
引用
收藏
页码:59 / 75
页数:17
相关论文
共 50 条
  • [1] Machine Learning in Chemical Dynamics
    Rupayan Biswas
    Richa Rashmi
    Upakarasamy Lourderaj
    Resonance, 2020, 25 : 59 - 75
  • [2] Machine learning for chemical discovery
    Alexandre Tkatchenko
    Nature Communications, 11
  • [3] Machine learning for chemical processes
    Aviso, Kathleen
    Zhang, Dongda
    Cameron, David
    Xuan, Jin
    DIGITAL CHEMICAL ENGINEERING, 2022, 5
  • [4] Machine Learning for Chemical Reactions
    Meuwly, Markus
    CHEMICAL REVIEWS, 2021, 121 (16) : 10218 - 10239
  • [5] Machine learning for chemical discovery
    Tkatchenko, Alexandre
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [6] Machine learning exciton dynamics
    Hase, Florian
    Valleau, Stephanie
    Pyzer-Knapp, Edward
    Aspuru-Guzik, Alan
    CHEMICAL SCIENCE, 2016, 7 (08) : 5139 - 5147
  • [7] Environmental chemical exposure dynamics and machine learning-based prediction of diabetes mellitus
    Wei, Hongcheng
    Sun, Jie
    Shan, Wenqi
    Xiao, Wenwen
    Wang, Bingqian
    Ma, Xuan
    Hu, Weiyue
    Wang, Xinru
    Xia, Yankai
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 806
  • [8] Learning molecular dynamics: predicting the dynamics of glasses by a machine learning simulator
    Liu, Han
    Huang, Zijie
    Schoenholz, Samuel S.
    Cubuk, Ekin D.
    Smedskjaer, Morten M.
    Sun, Yizhou
    Wang, Wei
    Bauchy, Mathieu
    MATERIALS HORIZONS, 2023, 10 (09) : 3416 - 3428
  • [9] Machine Learning of Interstellar Chemical Inventories
    Lee, Kin Long Kelvin
    Patterson, Jacqueline
    Burkhardt, Andrew M.
    Vankayalapati, Vivek
    McCarthy, Michael C.
    McGuire, Brett A.
    ASTROPHYSICAL JOURNAL LETTERS, 2021, 917 (01)
  • [10] Methodology for machine learning in chemical design
    Chonde, Seifu
    Storer, Joey
    Mueller, Karl
    Kumara, Soundar
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249