Learning molecular dynamics: predicting the dynamics of glasses by a machine learning simulator

被引:7
|
作者
Liu, Han [1 ]
Huang, Zijie [2 ]
Schoenholz, Samuel S. [3 ]
Cubuk, Ekin D. [3 ]
Smedskjaer, Morten M. [4 ]
Sun, Yizhou [2 ]
Wang, Wei [2 ]
Bauchy, Mathieu [5 ]
机构
[1] Sichuan Univ, Coll Polymer Sci & Engn, SOlids inFormaT AI Lab SOFT AI Lab, Chengdu 610065, Peoples R China
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[3] Google Res, Brain Team, Mountain View, CA 94043 USA
[4] Aalborg Univ, Dept Chem & Biosci, DK-9220 Aalborg, Denmark
[5] Univ Calif Los Angeles, Dept Civil & Environm Engn, Phys AmoRphous & Inorgan Solids Lab PARISlab, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
POTENTIALS; MATTER;
D O I
10.1039/d3mh00028a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Many-body dynamics of atoms such as glass dynamics is generally governed by complex (and sometimes unknown) physics laws. This challenges the construction of atom dynamics simulations that both (i) capture the physics laws and (ii) run with little computation cost. Here, based on graph neural network (GNN), we introduce an observation-based graph network (OGN) framework to "bypass all physics laws" to simulate complex glass dynamics solely from their static structure. By taking the example of molecular dynamics (MD) simulations, we successfully apply the OGN to predict atom trajectories evolving up to a few hundred timesteps and ranging over different families of complex atomistic systems, which implies that the atom dynamics is largely encoded in their static structure in disordered phases and, furthermore, allows us to explore the capacity of OGN simulations that is potentially generic to many-body dynamics. Importantly, unlike traditional numerical simulations, the OGN simulations bypass the numerical constraint of small integration timestep by a multiplier of & GE;5 to conserve energy and momentum until hundreds of timesteps, thus leapfrogging the execution speed of MD simulations for a modest timescale.
引用
收藏
页码:3416 / 3428
页数:13
相关论文
共 50 条
  • [1] Machine learning a molecular Hamiltonian for predicting electron dynamics
    Bhat H.S.
    Ranka K.
    Isborn C.M.
    Intl. J. Dyn. Cont., 2020, 4 (1089-1101): : 1089 - 1101
  • [2] Molecular Dynamics and Machine Learning in Catalysts
    Liu, Wenxiang
    Zhu, Yang
    Wu, Yongqiang
    Chen, Cen
    Hong, Yang
    Yue, Yanan
    Zhang, Jingchao
    Hou, Bo
    CATALYSTS, 2021, 11 (09)
  • [3] Machine Learning with and for Molecular Dynamics Simulations
    Riniker, Sereina
    Wang, Shuzhe
    Bleiziffer, Patrick
    Boeselt, Lennard
    Esposito, Carmen
    CHIMIA, 2019, 73 (12) : 1024 - 1027
  • [4] Predicting the Young's Modulus of Silicate Glasses using High-Throughput Molecular Dynamics Simulations and Machine Learning
    Yang, Kai
    Xu, Xinyi
    Yang, Benjamin
    Cook, Brian
    Ramos, Herbert
    Krishnan, N. M. Anoop
    Smedskjaer, Morten M.
    Hoover, Christian
    Bauchy, Mathieu
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [5] Predicting the Young’s Modulus of Silicate Glasses using High-Throughput Molecular Dynamics Simulations and Machine Learning
    Kai Yang
    Xinyi Xu
    Benjamin Yang
    Brian Cook
    Herbert Ramos
    N. M. Anoop Krishnan
    Morten M. Smedskjaer
    Christian Hoover
    Mathieu Bauchy
    Scientific Reports, 9
  • [6] Accurate and Transferable Machine Learning Potential for Molecular Dynamics Simulation of Sodium Silicate Glasses
    Bertani, Marco
    Charpentier, Thibault
    Faglioni, Francesco
    Pedone, Alfonso
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (03) : 1358 - 1370
  • [7] Bayesian machine learning for quantum molecular dynamics
    Krems, R. V.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (25) : 13392 - 13410
  • [8] Reactive molecular dynamics simulations and machine learning
    Krishnamoorthy, Aravind
    Rajak, Pankaj
    Hong, Sungwook
    Nomura, Ken-ichi
    Tiwari, Subodh
    Kalia, Rajiv K.
    Nakano, Aiichiro
    Vashishta, Priya
    METANANO 2019, 2020, 1461
  • [9] Machine learning implicit solvation for molecular dynamics
    Chen, Yaoyi
    Kraemer, Andreas
    Charron, Nicholas E.
    Husic, Brooke E.
    Clementi, Cecilia
    Noe, Frank
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (08):
  • [10] Predicting slow and fast neuronal dynamics with machine learning
    Follmann, Rosangela
    Rosa, Epaminondas, Jr.
    CHAOS, 2019, 29 (11)