On stochastic calculus with respect to q-Brownian motion

被引:4
|
作者
Deya, Aurelien [1 ]
Schott, Rene [1 ]
机构
[1] Univ Lorraine, Inst Elie Carton, BP 239, F-54506 Vandoeuvre Les Nancy, France
关键词
Non-commutative stochastic calculus; q-Brownian motion; Rough paths theory; ROUGH-PATHS;
D O I
10.1016/j.jfa.2017.08.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following the approach and the terminology introduced in Deya and Schott (2013) [6], we construct a product Levy area above the q-Brownian motion (for q is an element of [0,1)) and use this object to study differential equations driven by the process. We also provide a detailed comparison between the resulting "rough" integral and the stochastic "Ito" integral exhibited by Donati-Martin (2003) [7]. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1047 / 1075
页数:29
相关论文
共 50 条
  • [31] General Transfer Formula for Stochastic Integral with Respect to Multifractional Brownian Motion
    Christian Bender
    Joachim Lebovits
    Jacques Lévy Véhel
    Journal of Theoretical Probability, 2024, 37 : 905 - 932
  • [32] Renormalized stochastic calculus of variations for a renormalized infinite-dimensional Brownian motion
    Cruzeiro, Ana Bela
    Malliavin, Paul
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2009, 81 (3-4) : 385 - 399
  • [33] Stochastic calculus for tempered fractional Brownian motion and stability for SDEs driven by TFBM
    Zhang, Lijuan
    Wang, Yejuan
    Hu, Yaozhong
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2024, 42 (01) : 64 - 97
  • [34] Stratonovich Calculus with Respect to Fractional Brownian Sheet
    Kim, Yoon Tae
    Park, Hyun Suk
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2009, 27 (05) : 962 - 983
  • [35] A NEW APPROACH TO STOCHASTIC INTEGRATION WITH RESPECT TO FRACTIONAL BROWNIAN MOTION FOR NO ADAPTED PROCESSES
    Khalida, Bachir Cherif
    Abdeldjebbar, Kandouci
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2021, 16 (04): : 321 - 337
  • [36] A stochastic calculus approach for the Brownian snake
    Dhersin, JS
    Serlet, L
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2000, 52 (01): : 92 - 118
  • [37] Some It Formulas with Respect to Mixed Fractional Brownian Motion and Brownian Motion
    舒慧生
    阚秀
    周海涛
    JournalofDonghuaUniversity(EnglishEdition), 2010, 27 (04) : 530 - 534
  • [38] Stochastic Calculus for Fractional G-Brownian Motion and its Application to Mathematical Finance
    Guo, Changhong
    Feng, Shaomei
    He, Yong
    Zhang, Yong
    MARKOV PROCESSES AND RELATED FIELDS, 2024, 30 (04)
  • [39] Brownian and fractional Brownian stochastic currents via Malliavin calculus
    Flandoli, Franco
    Tudor, Ciprian A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (01) : 279 - 306
  • [40] Stochastic Calculus with Respect to Gaussian Processes
    Lebovits, Joachim
    POTENTIAL ANALYSIS, 2019, 50 (01) : 1 - 42