Stochastic calculus for tempered fractional Brownian motion and stability for SDEs driven by TFBM

被引:2
|
作者
Zhang, Lijuan [1 ]
Wang, Yejuan [1 ]
Hu, Yaozhong [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Tempered fractional Brownian motion; Stochastic integral; Malliavin calculus; Wick product; Ito formula; stochastic differential equation; general decay; stochastic stability; EXPONENTIAL STABILITY; EVOLUTION-EQUATIONS;
D O I
10.1080/07362994.2023.2192267
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this article is to introduce and study Ito type stochastic integrals with respect to tempered fractional Brownian motion (TFBM) of Hurst index H ? (1/2,1) and tempering parameter ? > 0, by using the Wick product. The main tools are fractional calculus and Malliavin calculus. The Ito formula for this stochastic integral is established for the Ito type processes driven by TFBM. Based on this new Ito formula, we analyze the stability of stochastic differential equations driven by TFBM in the sense of p-th moment. A numerical example is given to illustrate our stability results.
引用
收藏
页码:64 / 97
页数:34
相关论文
共 50 条
  • [1] Stochastic integration for tempered fractional Brownian motion
    Meerschaert, Mark M.
    Sabzikar, Farzad
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (07) : 2363 - 2387
  • [2] Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion
    Nualart, David
    Saussereau, Bruno
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (02) : 391 - 409
  • [3] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Li, Zhi
    Xu, Liping
    Zhou, Jie
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1): : S55 - S98
  • [4] Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion
    Hairer, M.
    Pillai, N. S.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (02): : 601 - 628
  • [5] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Zhi Li
    Liping Xu
    Jie Zhou
    Applied Mathematics & Optimization, 2021, 84 : 55 - 98
  • [6] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Li, Zhi
    Xu, Liping
    Zhou, Jie
    Applied Mathematics and Optimization, 2021, 84 : 55 - 98
  • [7] Distribution dependent SDEs driven by additive fractional Brownian motion
    Lucio Galeati
    Fabian A. Harang
    Avi Mayorcas
    Probability Theory and Related Fields, 2023, 185 : 251 - 309
  • [8] Distribution dependent SDEs driven by additive fractional Brownian motion
    Galeati, Lucio
    Harang, Fabian A.
    Mayorcas, Avi
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 185 (1-2) : 251 - 309
  • [9] Harnack inequalities for SDEs driven by subordinator fractional Brownian motion
    Li, Zhi
    Yan, Litan
    STATISTICS & PROBABILITY LETTERS, 2018, 134 : 45 - 53
  • [10] Application of the stochastic calculus of variation to the fractional Brownian motion
    Decreusefond, L
    Ustunel, AS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (12): : 1605 - 1608