Machine learning glasses

被引:6
|
作者
Biroli, Giulio [1 ]
机构
[1] Univ Paris, Sorbonne Univ, Univ PSL, Lab Phys,ENS,CNRS, Paris, France
关键词
4;
D O I
10.1038/s41567-020-0873-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Artificial neural networks now allow the dynamics of supercooled liquids to be predicted from their structure alone in an unprecedented way, thus providing a powerful new tool to study the physics of the glass transition.
引用
收藏
页码:373 / 374
页数:2
相关论文
共 50 条
  • [41] Predicting the pair correlation functions of silicate and borosilicate glasses using machine learning
    Ayush, Kumar
    Sahu, Pooja
    Ali, Sk. Musharaf
    Patra, Tarak K.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (02) : 1094 - 1104
  • [42] Machine learning bridges local static structure with multiple properties in metallic glasses
    Fan, Zhao
    Ding, Jun
    Ma, Evan
    Materials Today, 2020, 40 : 48 - 62
  • [43] Machine learning on density and elastic property of oxide glasses driven by large dataset
    Deng, Binghui
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2020, 529
  • [44] Extracting governing system for the plastic deformation of metallic glasses using machine learning
    Liping Yu
    Xiaoxiang Guo
    Gang Wang
    Baoan Sun
    Dongxue Han
    Cun Chen
    Jingli Ren
    Weihua Wang
    Science China(Physics,Mechanics & Astronomy) , 2022, Mechanics & Astronomy) . 2022查看该刊数据库收录来源 (06) : 80 - 91
  • [45] Predicting the dissolution kinetics of silicate glasses by topology-informed machine learning
    Han Liu
    Tony Zhang
    N. M. Anoop Krishnan
    Morten M. Smedskjaer
    Joseph V. Ryan
    Stéṕhane Gin
    Mathieu Bauchy
    npj Materials Degradation, 3
  • [46] Prediction of Glass Forming Ability of Bulk Metallic Glasses Using Machine Learning
    Reddy, G. Jaideep
    Kandavalli, Manjunadh
    Saboo, Tanay
    Rao, A. K. Prasada
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2021, 10 (04) : 610 - 626
  • [47] Prediction of Glass Forming Ability of Bulk Metallic Glasses Using Machine Learning
    G. Jaideep Reddy
    Manjunadh Kandavalli
    Tanay Saboo
    A. K. Prasada Rao
    Integrating Materials and Manufacturing Innovation, 2021, 10 : 610 - 626
  • [48] Machine learning bridges local static structure with multiple properties in metallic glasses
    Fan, Zhao
    Ding, Jun
    Ma, Evan
    MATERIALS TODAY, 2020, 40 : 48 - 62
  • [50] Rational design of chemically complex metallic glasses by hybrid modeling guided machine learning
    Z. Q. Zhou
    Q. F. He
    X. D. Liu
    Q. Wang
    J. H. Luan
    C. T. Liu
    Y. Yang
    npj Computational Materials, 7