Machine learning glasses

被引:6
|
作者
Biroli, Giulio [1 ]
机构
[1] Univ Paris, Sorbonne Univ, Univ PSL, Lab Phys,ENS,CNRS, Paris, France
关键词
4;
D O I
10.1038/s41567-020-0873-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Artificial neural networks now allow the dynamics of supercooled liquids to be predicted from their structure alone in an unprecedented way, thus providing a powerful new tool to study the physics of the glass transition.
引用
收藏
页码:373 / 374
页数:2
相关论文
共 50 条
  • [31] Towards smart glasses for facial expression recognition using OMG and machine learning
    Kiprijanovska, Ivana
    Stankoski, Simon
    Broulidakis, M. John
    Archer, James
    Fatoorechi, Mohsen
    Gjoreski, Martin
    Nduka, Charles
    Gjoreski, Hristijan
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [32] Interpreting the optical properties of oxide glasses with machine learning and Shapely additive explanations
    Zaki, Mohd
    Venugopal, Vineeth
    Bhattoo, Ravinder
    Bishnoi, Suresh
    Singh, Sourabh Kumar
    Allu, Amarnath R.
    Jayadeva
    Krishnan, N. M. Anoop
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2022, 105 (06) : 4046 - 4057
  • [33] Predicting the dissolution kinetics of silicate glasses by topology-informed machine learning
    Liu, Han
    Zhang, Tony
    Krishnan, N. M. Anoop
    Smedskjaer, Morten M.
    Ryan, Joseph V.
    Gin, Stephane
    Bauchy, Mathieu
    NPJ MATERIALS DEGRADATION, 2019, 3 (01)
  • [34] Towards smart glasses for facial expression recognition using OMG and machine learning
    Ivana Kiprijanovska
    Simon Stankoski
    M. John Broulidakis
    James Archer
    Mohsen Fatoorechi
    Martin Gjoreski
    Charles Nduka
    Hristijan Gjoreski
    Scientific Reports, 13 (1)
  • [35] Extracting governing system for the plastic deformation of metallic glasses using machine learning
    Yu, Liping
    Guo, Xiaoxiang
    Wang, Gang
    Sun, Baoan
    Han, Dongxue
    Chen, Cun
    Ren, Jingli
    Wang, Weihua
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (06)
  • [36] Machine Learning-Assisted Design of Na-Ion-Conducting Glasses
    Mandal, Indrajeet
    Mannan, Sajid
    Wondraczek, Lothar
    Gosvami, Nitya Nand
    Allu, Amarnath R. R.
    Krishnan, N. M. Anoop
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (30): : 14636 - 14644
  • [37] Determination of glass forming ability of bulk metallic glasses based on machine learning
    Peng, Li
    Long, Zhilin
    Zhao, Mingshengzi
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 195
  • [38] Predicting stiffness and toughness of aluminosilicate glasses using an interpretable machine learning model
    Du, Tao
    Chen, Zhimin
    Johansen, Sidsel M.
    Zhang, Qiangqiang
    Yue, Yuanzheng
    Smedskjaer, Morten M.
    ENGINEERING FRACTURE MECHANICS, 2025, 318
  • [39] Machine learning prediction of glass-forming ability in bulk metallic glasses
    Xiong, Jie
    Shi, San-Qiang
    Zhang, Tong-Yi
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 192
  • [40] Extracting governing system for the plastic deformation of metallic glasses using machine learning
    Liping Yu
    Xiaoxiang Guo
    Gang Wang
    Baoan Sun
    Dongxue Han
    Cun Chen
    Jingli Ren
    Weihua Wang
    Science China Physics, Mechanics & Astronomy, 2022, 65