Solving the bi-objective personnel assignment problem using particle swarm optimization

被引:13
|
作者
Lin, Shih-Ying [2 ]
Horng, Shi-Jinn [1 ,2 ]
Kao, Tzong-Wann [6 ]
Fahn, Chin-Shyurng [2 ]
Huang, Deng-Kui [4 ]
Run, Ray-Shine [3 ]
Wang, Yuh-Rau [7 ]
Kuo, I. -Hong [5 ]
机构
[1] SW Jiaotong Univ, Inst Mobile Commun, Chengdu, Peoples R China
[2] Natl Taiwan Univ Sci & Technol, Dept Comp Sci & Informat Engn, Taipei 106, Taiwan
[3] Natl United Univ, Dept Elect Engn, Miaoli 36003, Taiwan
[4] Lan Yang Inst Technol, Ilan 261, Taiwan
[5] St Marys Coll, Dept Informat Management, Ilan, Taiwan
[6] Taipei Chengshih Univ Sci & Technol, Dept Elect Engn, Taipei, Taiwan
[7] St Johns Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
Bi-objective personnel assignment problem; Particle swarm optimization; Random-key encoding scheme; ALGORITHM;
D O I
10.1016/j.asoc.2012.03.031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A particle swarm optimization (PSO) algorithm combined with the random-key (RK) encoding scheme (named as PSORK) for solving a bi-objective personnel assignment problem (BOPAP) is presented. The main contribution of this work is to improve the f(1)-f(2) heuristic algorithm which was proposed by Huang et al. [3]. The objective of the f(1)-f(2) heuristic algorithm is to get a satisfaction level (SL) value which is satisfied to the bi-objective values f(1), and f(2) for the personnel assignment problem. In this paper, PSORK algorithm searches the solution of BOPAP space thoroughly. The experimental results show that the solution quality of BOPAP based on the proposed method is far better than that of the f(1)-f(2) heuristic algorithm. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2840 / 2845
页数:6
相关论文
共 50 条
  • [41] Particle swarm optimization for task assignment problem
    Salman, A
    Ahmad, I
    Al-Madani, S
    MICROPROCESSORS AND MICROSYSTEMS, 2002, 26 (08) : 363 - 371
  • [42] Multi-objective QUBO Solver: Bi-objective Quadratic Assignment Problem
    Ayodele, Mayowa
    Allmendinger, Richard
    Lopez-Ibanez, Manuel
    Parizy, Matthieu
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 467 - 475
  • [43] Solving shortest path problem using particle swarm optimization
    Mohemmed, Ammar W.
    Sahoo, Nirod Chandra
    Geok, Tan Kim
    APPLIED SOFT COMPUTING, 2008, 8 (04) : 1643 - 1653
  • [44] Modeling and solving a bi-objective airport slot scheduling problem
    Androutsopoulos, Konstantinos N.
    Manousakis, Eleftherios G.
    Madas, Michael A.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 284 (01) : 135 - 151
  • [45] Optimising the bi-objective multidimensional integer knapsack problem using non-dominated sorting particle swarm optimisation
    Bagherinejad J.
    Dehghani M.
    International Journal of Industrial and Systems Engineering, 2016, 23 (03) : 263 - 289
  • [46] SOLVING BI-OBJECTIVE TRANSPORTATION PROBLEM UNDER NEUTROSOPHIC ENVIRONMENT
    Sandhiya, S.
    Dhanapal, Anuradha
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (04): : 831 - 854
  • [47] Fuzzy Multi-objective Particle Swarm Optimization Solving the Three-Objective Portfolio Optimization Problem
    Javier Alberto Rangel-González
    Héctor Fraire
    Juan Frausto Solís
    Laura Cruz-Reyes
    Claudia Gomez-Santillan
    Nelson Rangel-Valdez
    Juan Martín Carpio-Valadez
    International Journal of Fuzzy Systems, 2020, 22 : 2760 - 2768
  • [48] Fuzzy Multi-objective Particle Swarm Optimization Solving the Three-Objective Portfolio Optimization Problem
    Rangel-Gonzalez, Javier Alberto
    Fraire, Hector
    Solis, Juan Frausto
    Cruz-Reyes, Laura
    Gomez-Santillan, Claudia
    Rangel-Valdez, Nelson
    Carpio-Valadez, Juan Martin
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2020, 22 (08) : 2760 - 2768
  • [49] Bi-objective task assignment in heterogeneous distributed systems using honeybee mating optimization
    Kang, Qinma
    He, Hong
    Deng, Rong
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (05) : 2589 - 2600
  • [50] New mathematical model for the bi-objective inventory routing problem with a step cost function: A multi-objective particle swarm optimization solution approach
    Dabiri, Nooraddin
    Tarokh, Mohammad. J.
    Alinaghian, Mandi
    APPLIED MATHEMATICAL MODELLING, 2017, 49 : 302 - 318