On Clustering fMRI Using Potts and Mixture Regression Models

被引:2
|
作者
Xia, Jing [1 ]
Liang, Feng [1 ]
Wang, Yongmei Michelle [2 ]
机构
[1] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
[2] Univ Illinois, Psychol & Bioengn, Dept Stat, Champaign, IL 61820 USA
关键词
D O I
10.1109/IEMBS.2009.5332641
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we propose a model based clustering method for functional magnetic resonance imaging (fMRI) data to detect the functional connectivity network. The Potts model, which represents spatial interactions of neighboring voxels, is introduced to integrate the temporal mixture regression modeling into one single unified model. The estimation of the parameters is achieved through a restoration maximization (RM) algorithm for computation efficiency and accuracy. Additional features of our method include: the optimal number of clusters can be automatically determined; global trends and informative paradigms of the data are extracted by a dimension reduction algorithm based on principal component analysis (PCA) and a statistical significance test. Experimental results demonstrate that our approach can lead to robust and sensitive detection of functional networks.
引用
收藏
页码:4795 / +
页数:2
相关论文
共 50 条
  • [1] Probabilistic clustering of extratropical cyclones using regression mixture models
    Scott J. Gaffney
    Andrew W. Robertson
    Padhraic Smyth
    Suzana J. Camargo
    Michael Ghil
    Climate Dynamics, 2007, 29 : 423 - 440
  • [2] Probabilistic clustering of extratropical cyclones using regression mixture models
    Gaffney, Scott J.
    Robertson, Andrew W.
    Smyth, Padhraic
    Camargo, Suzana J.
    Ghil, Michael
    CLIMATE DYNAMICS, 2007, 29 (04) : 423 - 440
  • [3] Clustering electricity consumers using high-dimensional regression mixture models
    Devijver, Emilie
    Goude, Yannig
    Poggi, Jean-Michel
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2020, 36 (01) : 159 - 177
  • [4] Clustering via mixture regression models with random effects
    McLachlan, Geoffrey J.
    Ng, Sbu Kay
    Wang, Kui
    COMPSTAT 2008: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2008, : 397 - +
  • [5] Mixture Regression as Subspace Clustering
    Pimentel-Alarcon, Daniel
    Balzano, Laura
    Marcia, Roummel
    Nowak, Robert
    Willett, Rebecca
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 456 - 459
  • [6] Resting State fMRI Analysis using a Spatial Regression Mixture Model
    Oikonomou, Vangelis P.
    Blekas, Konstantinos
    Astrakas, Loukas
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2013,
  • [7] On clustering by mixture models
    McLachlan, GJ
    Ng, SK
    Peel, D
    EXPLORATORY DATA ANALYSIS IN EMPIRICAL RESEARCH, PROCEEDINGS, 2003, : 141 - 148
  • [8] Evaluating Differential Effects Using Regression Interactions and Regression Mixture Models
    Van Horn, M. Lee
    Jaki, Thomas
    Masyn, Katherine
    Howe, George
    Feaster, Daniel J.
    Lamont, Andrea E.
    George, Melissa R. W.
    Kim, Minjung
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2015, 75 (04) : 677 - 714
  • [9] Clustering of FMRI data for activation detection using HDR models
    Rao, AA
    Talavage, TM
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 1876 - 1879
  • [10] Unsupervised clustering using nonparametric finite mixture models
    Hunter, David R. R.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2024, 16 (01)