Polynomial Histograms for Multivariate Density and Mode Estimation

被引:7
|
作者
Jing, Junmei [2 ]
Koch, Inge [1 ]
Naito, Kanta [3 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] Australian Natl Univ, Ctr Bioinformat Sci, Canberra, ACT 0200, Australia
[3] Shimane Univ, Dept Math, Matsue, Shimane, Japan
基金
澳大利亚研究理事会;
关键词
asymptotic performance; estimation of modes; multivariate density estimation; polynomial histogram estimators; SCALE-SPACE;
D O I
10.1111/j.1467-9469.2011.00764.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
. We consider the problem of efficiently estimating multivariate densities and their modes for moderate dimensions and an abundance of data. We propose polynomial histograms to solve this estimation problem. We present first- and second-order polynomial histogram estimators for a general d-dimensional setting. Our theoretical results include pointwise bias and variance of these estimators, their asymptotic mean integrated square error (AMISE), and optimal binwidth. The asymptotic performance of the first-order estimator matches that of the kernel density estimator, while the second order has the faster rate of O(n-6/(d+6)). For a bivariate normal setting, we present explicit expressions for the AMISE constants which show the much larger binwidths of the second order estimator and hence also more efficient computations of multivariate densities. We apply polynomial histogram estimators to real data from biotechnology and find the number and location of modes in such data.
引用
收藏
页码:75 / 96
页数:22
相关论文
共 50 条
  • [42] Flexible Multivariate Density Estimation With Marginal Adaptation
    Giordani, Paolo
    Mun, Xiuyan
    Minh-Ngoc Tran
    Kohn, Robert
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (04) : 814 - 829
  • [43] Nonparametric multivariate density estimation using mixtures
    Wang, Xuxu
    Wang, Yong
    STATISTICS AND COMPUTING, 2015, 25 (02) : 349 - 364
  • [44] Support vector method for multivariate density estimation
    Vapnik, VN
    Mukherjee, S
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 659 - 665
  • [45] Nonparametric multivariate density estimation using mixtures
    Xuxu Wang
    Yong Wang
    Statistics and Computing, 2015, 25 : 349 - 364
  • [46] Feature significance for multivariate kernel density estimation
    Duong, Tam
    Cowling, Arianna
    Koch, Inge
    Wand, M. P.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (09) : 4225 - 4242
  • [47] Multivariate Density Estimation by Bayesian Sequential Partitioning
    Lu, Luo
    Jiang, Hui
    Wong, Wing H.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (504) : 1402 - 1410
  • [48] Local minimax pointwise estimation of a multivariate density
    Belitser, E
    STATISTICA NEERLANDICA, 2000, 54 (03) : 351 - 365
  • [49] PARSIMONIOUS MULTIVARIATE COPUL A MODEL FOR DENSITY ESTIMATION
    Bayestehtashk, Alireza
    Shafran, Izhak
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 5750 - 5754
  • [50] MULTIVARIATE KERNEL DENSITY ESTIMATION WITH A PARAMETRIC SUPPORT
    Jarnicka, Jolanta
    OPUSCULA MATHEMATICA, 2009, 29 (01) : 41 - 55