Flexible Multivariate Density Estimation With Marginal Adaptation

被引:5
|
作者
Giordani, Paolo [1 ]
Mun, Xiuyan [2 ]
Minh-Ngoc Tran [2 ]
Kohn, Robert [2 ]
机构
[1] Sveriges Riksbank, Res Dept, SE-10337 Stockholm, Sweden
[2] Univ New S Wales, Australian Sch Business, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Copula; Mixture of factor analyzers; Mixture of normals; Nonparametric; Variational Bayes;
D O I
10.1080/10618600.2012.672784
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article is concerned with multivariate density estimation. We discuss deficiencies in two popular multivariate density estimators-mixture and copula estimators, and propose a new class of estimators that combines the advantages of both mixture and copula modeling, while being more robust to their weaknesses. Our method adapts any multivariate density estimator using information obtained by separately estimating the marginals. We propose two marginally adapted estimators based on a multivariate mixture of normals and a mixture of factor analyzers estimators. These estimators are implemented using computationally efficient split-and-elimination variational Bayes algorithms. It is shown through simulation and real-data examples that the marginally adapted estimators are capable of improving on their original estimators and compare favorably with other existing methods. Supplementary materials for this article are available online.
引用
收藏
页码:814 / 829
页数:16
相关论文
共 50 条
  • [1] Multivariate density estimation with optimal marginal Parzen density estimation and Gaussianization
    Erdogmus, D
    Jenssen, R
    Rao, YN
    Principe, JC
    [J]. MACHINE LEARNING FOR SIGNAL PROCESSING XIV, 2004, : 73 - 82
  • [2] Flexible multivariate regression density estimation
    Tung Dao
    Minh-Ngoc Tran
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (20) : 4703 - 4717
  • [3] ADAPTATION IN MULTIVARIATE LOG-CONCAVE DENSITY ESTIMATION
    Feng, Oliver Y.
    Guntuboyina, Adityanand
    Kim, Arlene K. H.
    Samworth, Richard J.
    [J]. ANNALS OF STATISTICS, 2021, 49 (01): : 129 - 153
  • [4] ESTIMATION OF A MULTIVARIATE DENSITY
    CACOULLOS, T
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1966, 18 (02) : 179 - +
  • [5] Flexible multivariate marginal models for analyzing multivariate longitudinal data, with applications in R
    Asar, Oezguer
    Ilk, Ozlem
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 115 (03) : 135 - 146
  • [6] Dependence Estimation for Marginal Models of Multivariate Survival Data
    Segal M.R.
    Neuhaus J.M.
    James I.R.
    [J]. Lifetime Data Analysis, 1997, 3 (3) : 251 - 268
  • [7] Nearly nonparametric multivariate density estimates that incorporate marginal parametric density information
    Spiegelman, C
    Park, ES
    [J]. AMERICAN STATISTICIAN, 2003, 57 (03): : 183 - 188
  • [8] A combined strategy for multivariate density estimation
    Cholaquidis, Alejandro
    Fraiman, Ricardo
    Ghattas, Badih
    Kalemkerian, Juan
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2021, 33 (01) : 39 - 59
  • [9] Multivariate density estimation by probing depth
    Fraiman, R
    Liu, RY
    Meloche, J
    [J]. L(1)-STATISTICAL PROCEDURES AND RELATED TOPICS, 1997, 31 : 415 - 430
  • [10] Multivariate density estimation: A comparative study
    J. Ćwik
    J. Koronacki
    [J]. Neural Computing & Applications, 1997, 6 : 173 - 185