A new quasi-Monte Carlo algorithm for numerical integration of smooth functions

被引:0
|
作者
Atanassov, EI [1 ]
Dimov, IT [1 ]
Durchova, MK [1 ]
机构
[1] Bulgarian Acad Sci, Cent Lab Parallel Proc, BU-1113 Sofia, Bulgaria
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Bachvalov proved that the optimal order of convergence of a Monte Carlo method for numerical integration of functions with bounded k(th)order derivatives is [GRAPHICS] where s is the dimension. We construct a new Monte Carlo algorithm with such rate of convergence, which adapts to the variations of the sub-integral function and gains substantially in accuracy, when a low-discrepancy sequence is used instead of pseudo-random numbers. Theoretical estimates of the worst-case error of the method are obtained. Experimental results, showing the excellent parallelization properties of the algorithm and its applicability to problems of moderately high dimension, are also presented.
引用
下载
收藏
页码:128 / 135
页数:8
相关论文
共 50 条
  • [41] High-dimensional integration: The quasi-Monte Carlo way
    Dick, Josef
    Kuo, Frances Y.
    Sloan, Ian H.
    ACTA NUMERICA, 2013, 22 : 133 - 288
  • [42] Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order
    Dick, Josef
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) : 1519 - 1553
  • [43] Adaptive Quasi-Monte Carlo integration based on MISER and VEGAS
    Schürer, R
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, 2004, : 393 - 406
  • [44] Population Quasi-Monte Carlo
    Huang, Chaofan
    Joseph, V. Roshan
    Mak, Simon
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (03) : 695 - 708
  • [45] Quasi-Monte Carlo Software
    Choi, Sou-Cheng T.
    Hickernell, Fred J.
    Jagadeeswaran, Rathinavel
    McCourt, Michael J.
    Sorokin, Aleksei G.
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 23 - 47
  • [46] Langevin Quasi-Monte Carlo
    Liu, Sifan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [47] Parameter Tuning of the Firefly Algorithm by Standard Monte Carlo and Quasi-Monte Carlo Methods
    Joy, Geethu
    Huyck, Christian
    Yang, Xin-She
    COMPUTATIONAL SCIENCE, ICCS 2024, PT V, 2024, 14836 : 242 - 253
  • [48] Empirically Estimating Error of Integration by Quasi-Monte Carlo Method
    Antonov, A. A.
    Ermakov, S. M.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2014, 47 (01) : 1 - 8
  • [49] On quasi-Monte Carlo integrations
    Sobol, IM
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 103 - 112
  • [50] Quasi-Monte Carlo integration using digital nets with antithetics
    Goda, Takashi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 304 : 26 - 42