Sharp Cu@Sn nanocones on Cu foam for highly selective and efficient electrochemical reduction of CO2 to formate

被引:73
|
作者
Chen, Chengzhen [1 ]
Pang, Yuanjie [2 ]
Zhang, Fanghua [1 ]
Zhong, Juhua [3 ]
Zhang, Bo [4 ]
Cheng, Zhenmin [1 ]
机构
[1] East China Univ Sci & Technol, Sch Chem Engn, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China
[3] East China Univ Sci & Technol, Dept Phys, Shanghai 200237, Peoples R China
[4] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200438, Peoples R China
关键词
CARBON-DIOXIDE REDUCTION; FORMIC-ACID; AQUEOUS CO2; HIGH-DENSITY; ELECTROREDUCTION; CATALYSTS; ELECTRODES; NANOPARTICLES; ELECTROCATALYST; CONVERSION;
D O I
10.1039/c8ta06826g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical reduction of aqueous CO2 into formate is subject to poor selectivity and low current density with conventional Sn-based catalysts owing to the inert nature of CO2 molecules and the low number of active sites. Recently, it has been demonstrated that alkali metal cations could greatly enhance selectivity for CO2 reduction by stabilizing the key intermediates, which leads to an effective solution to this problem by concentrating local metal cations through tailoring the catalyst structure. Herein, we synthesized spiky Cu@Sn nanocones over a macroporous Cu foam, which has a curvature radius of 10nm, via facile electrochemical coating of a thin layer of Sn over the Cu nanoconic surface. A faradaic efficiency of 90.4% toward formate production was achieved, with a current density of 57.7 mA cm(-2) at -1.1 V vs. a reversible hydrogen electrode, which far exceeds results achieved to date with state-of-the-art Sn catalysts. The performance should be attributed to the combined effects of a sharp conical feature that facilitates the enrichment of surface-adsorbed metal cations and the promotion of the mass transfer and active sites growth favored by the three-dimensional porous network.
引用
收藏
页码:19621 / 19630
页数:10
相关论文
共 50 条
  • [21] Halogen-Incorporated Sn Catalysts for Selective Electrochemical CO2 Reduction to Formate
    Wang, Tian
    Chen, Jiadong
    Ren, Xinyi
    Zhang, Jincheng
    Ding, Jie
    Liu, Yuhang
    Lim, Kang Hui
    Wang, Junhu
    Li, Xuning
    Yang, Hongbin
    Huang, Yanqiang
    Kawi, Sibudjing
    Liu, Bin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (10)
  • [22] Compositional and Geometrical Effects of Bimetallic Cu-Sn Catalysts on Selective Electrochemical CO2 Reduction to CO
    Yoo, Chul Jong
    Dong, Wan Jae
    Park, Jae Yong
    Lim, Jin Wook
    Kim, Sungjoo
    Choi, Kyoung Soon
    Ngome, Francis Okello Odongo
    Choi, Si-Young
    Lee, Jong-Lam
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (05): : 4466 - 4473
  • [23] The flaky Cd film on Cu plate substrate: An active and efficient electrode for electrochemical reduction of CO2 to formate
    Chen, Zhipeng
    Wang, Nailiang
    Yao, Shuyu
    Liu, Licheng
    JOURNAL OF CO2 UTILIZATION, 2017, 22 : 191 - 196
  • [24] Selective electrochemical CO2 reduction on Cu-Pd heterostructure
    Xie, Jia-Fang
    Chen, Jie-Jie
    Huang, Yu-Xi
    Zhang, Xing
    Wang, Wei-Kang
    Huang, Gui-Xiang
    Yu, Han-Qing
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 270 (270)
  • [25] Selective electroreduction of CO2 to formate over the co-electrodeposited Cu/Sn bimetallic catalyst
    Li, Huaxin
    Yue, Xian
    Qiu, Yunsheng
    Xiao, Zhou
    Yu, Xianbo
    Xue, Chao
    Xiang, Junhui
    MATERIALS TODAY ENERGY, 2021, 21
  • [26] Cu-Sn Aerogels for Electrochemical CO2 Reduction with High CO Selectivity
    Pan, Yexin
    Wu, Muchen
    Ye, Ziran
    Tang, Haibin
    Hong, Zhanglian
    Zhi, Mingjia
    MOLECULES, 2023, 28 (03):
  • [27] Electrodeposited Cu-Sn Alloy for Electrochemical CO2 Reduction to CO/HCOO−
    Masayuki Morimoto
    Yoshiyuki Takatsuji
    Ryota Yamasaki
    Hikaru Hashimoto
    Ikumi Nakata
    Tatsuya Sakakura
    Tetsuya Haruyama
    Electrocatalysis, 2018, 9 : 323 - 332
  • [28] Anion-regulation engineering toward Cu/In/MOF bimetallic electrocatalysts for selective electrochemical reduction of CO2 to CO/formate
    Xu, Bingqing
    Hasan, Israr Masood Ul
    Peng, Luwei
    Liu, Junyu
    Xu, Nengneng
    Fan, Mengyang
    Niazi, Nabeel Khan
    Qiao, Jinli
    MATERIALS REPORTS: ENERGY, 2022, 2 (03):
  • [29] Tunable Selectivity for Electrochemical CO2 Reduction by Bimetallic Cu-Sn Catalysts: Elucidating the Roles of Cu and Sn
    Zhang, Maolin
    Zhang, Zedong
    Zhao, Zhenghang
    Huang, Hao
    Anjum, Dalaver H.
    Wang, Dingsheng
    He, Jr-hau
    Huang, Kuo-Wei
    ACS CATALYSIS, 2021, 11 (17): : 11103 - 11108
  • [30] Engineering Sn-based Catalytic Materials for Efficient Electrochemical CO2 Reduction to Formate
    Tay, Ying Fan
    Tan, Zheng Hao
    Lum, Yanwei
    CHEMNANOMAT, 2021, 7 (04) : 380 - 391