Selective electrochemical CO2 reduction on Cu-Pd heterostructure

被引:89
|
作者
Xie, Jia-Fang [1 ]
Chen, Jie-Jie [1 ]
Huang, Yu-Xi [2 ]
Zhang, Xing [1 ]
Wang, Wei-Kang [1 ]
Huang, Gui-Xiang [1 ]
Yu, Han-Qing [1 ]
机构
[1] Univ Sci & Technol China, Dept Appl Chem, CAS Key Lab Urban Pollutant Convers, Hefei 230026, Peoples R China
[2] Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
CO2; reduction; Catalysis; Electrochemistry; Selectivity; Cu-Pd heterostructure; SIZE-DEPENDENT ACTIVITY; CARBON-DIOXIDE; ELECTROCATALYTIC CONVERSION; COPPER NANOCRYSTALS; METAL-ELECTRODES; ELECTROREDUCTION; NANOPARTICLES; CATALYSTS; HYDROCARBONS; MORPHOLOGY;
D O I
10.1016/j.apcatb.2020.118864
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a novel Cu-Pd heterostructure, derived from CuCl-PdOx hexagonal microplates, was prepared to tune selective single hydrocarbon production from electrochemical CO2 reduction. The CuCl-PdOx hexagonal microplates were synthesized by a dual-potential electrodeposition technique, followed by electrochemical reduction to form Cu-Pd heterostructure. This Cu-Pd heterostructure exhibited a much higher CO2-to-CH4 selectivity (32 % Faradaic efficiency, FE) compared to pure Cu or Pd. Moreover, Cu-Pd heterostructure showed excellent suppression on C2H4 generation (below 1 % FE). The density functional theory calculations suggested that the hollow site of Pd region in the Cu-Pd heterostructure could stablize CO* intermediate and selectively lowered the energy demand for CH4 formation rather than C2H4. This work provides new opportunities of designing Cu-based electrocatalysts for selective CO2 reduction to single hydrocarbon.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO
    Mun, Yeongdong
    Lee, Seunghyun
    Cho, Ara
    Kim, Seongbeen
    Han, Jeong Woo
    Lee, Jinwoo
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 246 : 82 - 88
  • [2] Theoretical Understanding of the Interface Effect in Promoting Electrochemical CO2 Reduction on Cu-Pd Alloys
    Li, Yanle
    Tian, Ziqi
    Chen, Liang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (39): : 21381 - 21389
  • [3] A Cu-Pd alloy catalyst with partial phase separation for the electrochemical CO2 reduction reaction
    Gyeong Ho Han
    Jung Yong Seo
    Minji Kang
    Myung-gi Seo
    Youngheon Choi
    Soo Young Kim
    Sang Hyun Ahn
    Journal of Energy Chemistry , 2024, (06) : 8 - 15
  • [4] A Cu-Pd alloy catalyst with partial phase separation for the electrochemical CO2 reduction reaction
    Han, Gyeong Ho
    Seo, Jung Yong
    Kang, Minji
    Seo, Myung-gi
    Choi, Youngheon
    Kim, Soo Young
    Ahn, Sang Hyun
    JOURNAL OF ENERGY CHEMISTRY, 2024, 93 : 8 - 15
  • [5] Cu-Pd Bimetallic Gas Diffusion Electrodes for Electrochemical Reduction of CO2 to C2+ Products
    Zhu, Chang
    Chen, Aohui
    Mao, Jianing
    Wu, Gangfeng
    Li, Shoujie
    Dong, Xiao
    Li, Guihua
    Jiang, Zheng
    Song, Yanfang
    Chen, Wei
    Wei, Wei
    SMALL STRUCTURES, 2023, 4 (05):
  • [6] Electrodeposited Cu-Pd bimetallic catalysts for the selective electroreduction of CO2 to ethylene
    Feng, Ruting
    Zhu, Qinggong
    Chu, Mengen
    Jia, Shuaiqiang
    Zhai, Jianxin
    Wu, Haihong
    Wu, Peng
    Han, Buxing
    GREEN CHEMISTRY, 2020, 22 (21) : 7560 - 7565
  • [7] Tuning Electrochemical CO2 Reduction through Variation in Composition of the Cu-Pd Bimetallic Catalyst: Experimental and Theoretical Investigations
    Gupta, Sumit
    Mukherjee, Debarati
    Das, Tridip
    Goddard III, William A.
    Kuila, Debasish
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2025, 16 (08): : 1894 - 1898
  • [8] Selective nitrate reduction by Cu-Pd/Hematite catalyst
    Jung, Sungyoon
    Bae, SungJun
    Lee, Woojin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [9] Effect of support and reduction temperature in the hydrogenation of CO2 over the Cu-Pd bimetallic catalyst with high Cu/Pd ratio
    Xu, Yamei
    Ding, Ziluo
    Qiu, Rui
    Hou, Ruijun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (65) : 27973 - 27985
  • [10] Highly selective Cu-In catalyst for electrochemical reduction of CO2 to CO
    Jedidi, Abdesslem
    Rasul, Shahid
    Takanabe, Kazuhiro
    Cavallo, Luigi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251