On the secant varieties to the tangent developable of a Veronese variety

被引:7
|
作者
Ballico, E [1 ]
机构
[1] Univ Trent, Dept Math, I-38050 Trento, Italy
关键词
tangent developable; secant variety; tangent space; fat point; zero-dimensional scheme; postulation;
D O I
10.1016/j.jalgebra.2005.03.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V-n,V-d subset of P-N, for N := ((n+d)(n)) - 1, be the order-d Veronese embedding of P-n,P- X-n,X-d := T(V-n,V-d) subset of P-N the tangent developable of V-n,V-d, and Ss-1(X-n,X-d) subset of P-N the s-secant variety of X-n,X-d, i.e. the closure in P-N of the union of all (s - 1)-linear spaces spanned by s points Of X-n,X-d. Ss-1(X-n,X-d) has expected dimension min {N, (2n + 1)s - 1}. Catalisano, Geramita, and Gimigliano conjectured that Ss-l (X-n,X-d) has always the expected dimension, except when d = 2, n >= 2s or d = 3 and n = 2, 3, 4. In this paper we prove their conjecture when n = 2 and n = 3. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:279 / 286
页数:8
相关论文
共 50 条
  • [41] A note on Veronese varieties
    Barile M.
    Rendiconti del Circolo Matematico di Palermo, 2005, 54 (3) : 359 - 366
  • [42] On the third secant variety
    Jarosław Buczyński
    J. M. Landsberg
    Journal of Algebraic Combinatorics, 2014, 40 : 475 - 502
  • [43] Sumsets and Veronese varieties
    Colarte-Gomez, Liena
    Elias, Joan
    Miro-Roig, Rosa M.
    COLLECTANEA MATHEMATICA, 2023, 74 (02) : 353 - 374
  • [44] Projectable Veronese varieties
    Alberto Alzati
    Edoardo Ballico
    Revista Matemática Complutense, 2011, 24 : 219 - 249
  • [45] Sumsets and Veronese varieties
    Liena Colarte-Gómez
    Joan Elias
    Rosa M. Miró-Roig
    Collectanea Mathematica, 2023, 74 : 353 - 374
  • [46] Singularities of the secant variety
    Vermeire, Peter
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (06) : 1129 - 1132
  • [47] On the third secant variety
    Buczynski, Jaroslaw
    Landsberg, J. M.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 40 (02) : 475 - 502
  • [48] ON THE NUMBER OF TRIPLE POINTS OF THE TANGENT DEVELOPABLE
    BALLESTEROS, JJN
    GEOMETRIAE DEDICATA, 1993, 47 (03) : 241 - 254
  • [49] SINGULARITIES OF PARALLELS TO TANGENT DEVELOPABLE SURFACES
    Ishikawa, Goo
    TOHOKU MATHEMATICAL JOURNAL, 2023, 75 (02) : 233 - 249
  • [50] The Veronese variety and catalecticant matrices
    Pucci, M
    JOURNAL OF ALGEBRA, 1998, 202 (01) : 72 - 95