On the secant varieties to the tangent developable of a Veronese variety

被引:7
|
作者
Ballico, E [1 ]
机构
[1] Univ Trent, Dept Math, I-38050 Trento, Italy
关键词
tangent developable; secant variety; tangent space; fat point; zero-dimensional scheme; postulation;
D O I
10.1016/j.jalgebra.2005.03.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V-n,V-d subset of P-N, for N := ((n+d)(n)) - 1, be the order-d Veronese embedding of P-n,P- X-n,X-d := T(V-n,V-d) subset of P-N the tangent developable of V-n,V-d, and Ss-1(X-n,X-d) subset of P-N the s-secant variety of X-n,X-d, i.e. the closure in P-N of the union of all (s - 1)-linear spaces spanned by s points Of X-n,X-d. Ss-1(X-n,X-d) has expected dimension min {N, (2n + 1)s - 1}. Catalisano, Geramita, and Gimigliano conjectured that Ss-l (X-n,X-d) has always the expected dimension, except when d = 2, n >= 2s or d = 3 and n = 2, 3, 4. In this paper we prove their conjecture when n = 2 and n = 3. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:279 / 286
页数:8
相关论文
共 50 条
  • [31] Adjoint varieties and their secant varieties
    Kaji, H
    Ohno, M
    Yasukura, O
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1999, 10 (01): : 45 - 57
  • [32] Integrating polynomials in secant and tangent
    McCammond, JP
    AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (09): : 856 - 858
  • [33] DERIVATIVE POLYNOMIALS FOR TANGENT AND SECANT
    HOFFMAN, ME
    AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (01): : 23 - 30
  • [34] Secant varieties of Grassmann varieties
    Catalisano, MV
    Geramita, AV
    Gimigliano, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) : 633 - 642
  • [35] CHARACTERIZATION OF VERONESE VARIETIES
    NOMIZU, K
    NAGOYA MATHEMATICAL JOURNAL, 1976, 60 (FEB) : 181 - 188
  • [36] On the secant varieties of tangential varieties
    Ballico, Edoardo
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (12)
  • [37] Secant varieties of toric varieties
    Cox, David
    Sidman, Jessica
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (03) : 651 - 669
  • [38] Tangential varieties of Segre–Veronese varieties
    Luke Oeding
    Claudiu Raicu
    Collectanea Mathematica, 2014, 65 : 303 - 330
  • [39] Projectable Veronese varieties
    Alzati, Alberto
    Ballico, Edoardo
    REVISTA MATEMATICA COMPLUTENSE, 2011, 24 (01): : 219 - 249
  • [40] A property of the varieties of Veronese
    Godeaux, L
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1941, 44 (6/10): : 1058 - 1061