Data-Driven Deep Learning-Based Attention Mechanism for Remaining Useful Life Prediction: Case Study Application to Turbofan Engine Analysis

被引:30
|
作者
Muneer, Amgad [1 ,2 ]
Taib, Shakirah Mohd [1 ,2 ]
Naseer, Sheraz [3 ]
Ali, Rao Faizan [3 ]
Aziz, Izzatdin Abdul [1 ,2 ]
机构
[1] Univ Teknol PETRONAS, Dept Comp & Informat Sci, Seri Iskandar 32160, Perak, Malaysia
[2] Univ Teknol PETRONAS, Ctr Res Data Sci CERDAS, Seri Iskandar 32610, Perak, Malaysia
[3] Univ Management & Technol, Dept Comp Sci, Lahore 54728, Pakistan
关键词
turbofan engine degradation; data-driven prognostic; deep neural network (DNN); prognostics and health management (PHM); remaining useful life (RUL); uncertainty; CONVOLUTIONAL NEURAL-NETWORK; CONDITION-BASED MAINTENANCE; DIAGNOSTICS; PROGNOSIS; ENSEMBLE; LSTM;
D O I
10.3390/electronics10202453
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurately predicting the remaining useful life (RUL) of the turbofan engine is of great significance for improving the reliability and safety of the engine system. Due to the high dimension and complex features of sensor data in RUL prediction, this paper proposes four data-driven prognostic models based on deep neural networks (DNNs) with an attention mechanism. To improve DNN feature extraction, data are prepared using a sliding time window technique. The raw data collected after normalizing is simply fed into the suggested network, requiring no prior knowledge of prognostics or signal processing and simplifying the proposed method's applicability. In order to verify the RUL prediction ability of the proposed DNN techniques, the C-MAPSS benchmark dataset of the turbofan engine system is validated. The experimental results showed that the developed long short-term memory (LSTM) model with attention mechanism achieved accurate RUL prediction in both scenarios with a high degree of robustness and generalization ability. Furthermore, the proposed model performance outperforms several state-of-the-art prognosis methods, where the LSTM-based model with attention mechanism achieved an RMSE of 12.87 and 11.23 for FD002 and FD003 subset of data, respectively.</p>
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Deep-Learning Based Prognosis Approach for Remaining Useful Life Prediction of Turbofan Engine
    Muneer, Amgad
    Taib, Shakirah Mohd
    Fati, Suliman Mohamed
    Alhussian, Hitham
    [J]. SYMMETRY-BASEL, 2021, 13 (10):
  • [2] A Spatio-Temporal Attention Mechanism Based Approach for Remaining Useful Life Prediction of Turbofan Engine
    Peng, Cheng
    Wu, Jiaqi
    Tang, Zhaohui
    Yuan, Xinpan
    Li, Changyun
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [3] Global attention mechanism based deep learning for remaining useful life prediction of aero-engine
    Xu, Zhiqiang
    Zhang, Yujie
    Miao, Jianguo
    Miao, Qiang
    [J]. MEASUREMENT, 2023, 217
  • [4] Prediction of remaining useful life of turbofan engine based on optimized model
    Liu, Yuefeng
    Zhang, Xiaoyan
    Guo, Wei
    Bian, Haodong
    He, Yingjie
    Liu, Zhen
    [J]. 2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 1473 - 1477
  • [5] Prediction of Remaining Useful Life Using Fused Deep Learning Models: A Case Study of Turbofan Engines
    Zheng, Yu
    Bao, Xiangyu
    Zhao, Fei
    Chen, Chong
    Liu, Ying
    Sun, Bo
    Wang, Haotong
    [J]. JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2022, 22 (05)
  • [6] Spatial correlation and temporal attention-based LSTM for remaining useful life prediction of turbofan engine
    Tian, Huixin
    Yang, Linzheng
    Ju, Bingtian
    [J]. MEASUREMENT, 2023, 214
  • [7] A novel deep learning method based on attention mechanism for bearing remaining useful life prediction
    Chen, Yuanhang
    Peng, Gaoliang
    Zhu, Zhiyu
    Li, Sijue
    [J]. APPLIED SOFT COMPUTING, 2020, 86 (86)
  • [8] Data-driven remaining useful life prediction based on domain adaptation
    Wen, Bin Cheng
    Xiao, Ming Qing
    Wang, Xue Qi
    Zhao, Xin
    Li, Jian Feng
    Chen, Xin
    [J]. PEERJ COMPUTER SCIENCE, 2021, 7 : 1 - 25
  • [9] A Deep Learning-Based Remaining Useful Life Prediction Approach for Bearings
    Cheng, Cheng
    Ma, Guijun
    Zhang, Yong
    Sun, Mingyang
    Teng, Fei
    Ding, Han
    Yuan, Ye
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2020, 25 (03) : 1243 - 1254
  • [10] Remaining Useful Life Prediction via a Data-Driven Deep Learning Fusion Model-CALAP
    Wu, Mingyan
    Ye, Qing
    Mu, Jianxin
    Fu, Zuyu
    Han, Yilin
    [J]. IEEE ACCESS, 2023, 11 : 112085 - 112096