A Deep Learning-Based Remaining Useful Life Prediction Approach for Bearings

被引:132
|
作者
Cheng, Cheng [1 ]
Ma, Guijun [2 ,3 ]
Zhang, Yong [4 ]
Sun, Mingyang [5 ]
Teng, Fei [6 ]
Ding, Han [2 ,3 ]
Yuan, Ye [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China
[4] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
[5] Zhejiang Univ, Coll Control Sci & Engn, Hangzhou 310007, Peoples R China
[6] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
中国国家自然科学基金;
关键词
Convolutional neural networks (CNNs); Hilbert-Huang transform (HHT); remaining useful life (RUL) estimation; rolling bearings; HILBERT-HUANG TRANSFORM; FEATURE-EXTRACTION; PROGNOSTICS; DEGRADATION;
D O I
10.1109/TMECH.2020.2971503
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In industrial applications, nearly half the failures of motors are caused by the degradation of rolling element bearings (REBs). Therefore, accurately estimating the remaining useful life (RUL) for REBs is of crucial importance to ensure the reliability and safety of mechanical systems. To tackle this challenge, model-based approaches are limited by the complexity of mathematical modeling. Conventional data-driven approaches, on the other hand, require massive efforts to extract the degradation features and construct the health index. In this article, a novel data-driven framework is proposed to exploit the adoption of deep convolutional neural networks (CNNs) in predicting the RULs of bearings. More concretely, raw vibrations of training bearings are first processed using the Hilbert-Huang transform to construct a novel nonlinear degradation energy indicator which can be used as the training label. The CNN is then employed to identify the hidden pattern between the extracted degradation energy indicator and the raw vibrations of training bearings, which makes it possible to estimate the degradation of the test bearings automatically. Finally, testing bearings' RULs are predicted through using an epsilon-support vector regression model. The superior performance of the proposed RUL estimation framework, compared with the state-of-the-art approaches, is demonstrated through the experimental results. The generality of the proposed CNN model is also validated by performance test on other bearings undergoing different operating conditions.
引用
下载
收藏
页码:1243 / 1254
页数:12
相关论文
共 50 条
  • [1] A Deep Learning-based Remaining Useful Life Prediction Approach for Engineering Systems
    Zhao, Yuyu
    Wang, Yuxiao
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6249 - 6254
  • [2] A deep learning-based approach for electrical equipment remaining useful life prediction
    Fu H.
    Liu Y.
    Autonomous Intelligent Systems, 2022, 2 (01):
  • [3] An Interpretable Deep Transfer Learning-Based Remaining Useful Life Prediction Approach for Bearings With Selective Degradation Knowledge Fusion
    Mao, Wentao
    Liu, Jing
    Chen, Jiaxian
    Liang, Xihui
    IEEE Transactions on Instrumentation and Measurement, 2022, 71
  • [4] An Interpretable Deep Transfer Learning-Based Remaining Useful Life Prediction Approach for Bearings With Selective Degradation Knowledge Fusion
    Mao, Wentao
    Liu, Jing
    Chen, Jiaxian
    Liang, Xihui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [5] An online transfer learning-based remaining useful life prediction method of ball bearings
    Zeng, Fuchuan
    Li, Yiming
    Jiang, Yuhang
    Song, Guiqiu
    MEASUREMENT, 2021, 176
  • [6] Deep Transfer Learning Remaining Useful Life Prediction of Different Bearings
    Xu, Juan
    Fang, Mengting
    Zhao, Weihua
    Fan, Yuqi
    Ding, Xu
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [7] A Remaining Useful Life Prediction Method of Rolling Bearings Based on Deep Reinforcement Learning
    Zheng, Guokang
    Li, Yasong
    Zhou, Zheng
    Yan, Ruqiang
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (13): : 22938 - 22949
  • [8] Method for remaining useful life prediction of rolling bearings based on deep reinforcement learning
    Wang, Yipeng
    Li, Yonghua
    Lu, Hang
    Wang, Denglong
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (09):
  • [9] Deep transfer learning-based hierarchical adaptive remaining useful life prediction of bearings considering the correlation of multistage degradation
    Zhang, Han-Bing
    Cheng, De-Jun
    Zhou, Kai-Li
    Zhang, Sheng-Wen
    KNOWLEDGE-BASED SYSTEMS, 2023, 266
  • [10] Deep Learning-Based Remaining Useful Life Estimation of Bearings with Time-Frequency Information
    Liu, Bingguo
    Gao, Zhuo
    Lu, Binghui
    Dong, Hangcheng
    An, Zeru
    SENSORS, 2022, 22 (19)