A Deep Learning-Based Remaining Useful Life Prediction Approach for Bearings

被引:132
|
作者
Cheng, Cheng [1 ]
Ma, Guijun [2 ,3 ]
Zhang, Yong [4 ]
Sun, Mingyang [5 ]
Teng, Fei [6 ]
Ding, Han [2 ,3 ]
Yuan, Ye [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China
[4] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
[5] Zhejiang Univ, Coll Control Sci & Engn, Hangzhou 310007, Peoples R China
[6] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
中国国家自然科学基金;
关键词
Convolutional neural networks (CNNs); Hilbert-Huang transform (HHT); remaining useful life (RUL) estimation; rolling bearings; HILBERT-HUANG TRANSFORM; FEATURE-EXTRACTION; PROGNOSTICS; DEGRADATION;
D O I
10.1109/TMECH.2020.2971503
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In industrial applications, nearly half the failures of motors are caused by the degradation of rolling element bearings (REBs). Therefore, accurately estimating the remaining useful life (RUL) for REBs is of crucial importance to ensure the reliability and safety of mechanical systems. To tackle this challenge, model-based approaches are limited by the complexity of mathematical modeling. Conventional data-driven approaches, on the other hand, require massive efforts to extract the degradation features and construct the health index. In this article, a novel data-driven framework is proposed to exploit the adoption of deep convolutional neural networks (CNNs) in predicting the RULs of bearings. More concretely, raw vibrations of training bearings are first processed using the Hilbert-Huang transform to construct a novel nonlinear degradation energy indicator which can be used as the training label. The CNN is then employed to identify the hidden pattern between the extracted degradation energy indicator and the raw vibrations of training bearings, which makes it possible to estimate the degradation of the test bearings automatically. Finally, testing bearings' RULs are predicted through using an epsilon-support vector regression model. The superior performance of the proposed RUL estimation framework, compared with the state-of-the-art approaches, is demonstrated through the experimental results. The generality of the proposed CNN model is also validated by performance test on other bearings undergoing different operating conditions.
引用
下载
收藏
页码:1243 / 1254
页数:12
相关论文
共 50 条
  • [21] Hybrid approach for remaining useful life prediction of ball bearings
    Wang, Fu-Kwun
    Mamo, Tadele
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2019, 35 (07) : 2494 - 2505
  • [22] Lithium-ion battery remaining useful life prediction: a federated learning-based approach
    Zhong, Ruirui
    Hu, Bingtao
    Feng, Yixiong
    Lou, Shanhe
    Hong, Zhaoxi
    Wang, Fei
    Li, Guangshen
    Tan, Jianrong
    ENERGY ECOLOGY AND ENVIRONMENT, 2024, 9 (05) : 549 - 562
  • [23] Transfer learning-based deep learning models for proton exchange membrane fuel remaining useful life prediction
    Kebede, Getnet Awoke
    Lo, Shih-Che
    Wang, Fu-Kwun
    Chou, Jia-Hong
    FUEL, 2024, 367
  • [24] Deep Learning-Based Cloud-Edge Collaboration Framework for Remaining Useful Life Prediction of Machinery
    Jing, Tao
    Tian, Xitian
    Hu, Hao
    Ma, Liping
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (10) : 7208 - 7218
  • [25] Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns
    Xiong, Jiawei
    Zhou, Jian
    Ma, Yizhong
    Zhang, Fengxia
    Lin, Chenglong
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 235
  • [26] Robust prediction of remaining useful lifetime of bearings using deep learning
    Magadan, L.
    Granda, J. C.
    Suarez, F. J.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 130
  • [27] Deep-Learning Based Prognosis Approach for Remaining Useful Life Prediction of Turbofan Engine
    Muneer, Amgad
    Taib, Shakirah Mohd
    Fati, Suliman Mohamed
    Alhussian, Hitham
    SYMMETRY-BASEL, 2021, 13 (10):
  • [28] Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach
    Chen, Zhenghua
    Wu, Min
    Zhao, Rui
    Guretno, Feri
    Yan, Ruqiang
    Li, Xiaoli
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (03) : 2521 - 2531
  • [29] Remaining useful life prediction with insufficient degradation datbased on deep learning approach
    Lyu, Yi
    Jiang, Yijie
    Zhang, Qichen
    Chen, Ci
    Eksploatacja i Niezawodnosc, 2021, 23 (04) : 745 - 756
  • [30] A Cotraining-Based Semisupervised Approach for Remaining-Useful-Life Prediction of Bearings
    Yan, Xuguo
    Xia, Xuhui
    Wang, Lei
    Zhang, Zelin
    SENSORS, 2022, 22 (20)