Data-Driven Deep Learning-Based Attention Mechanism for Remaining Useful Life Prediction: Case Study Application to Turbofan Engine Analysis

被引:30
|
作者
Muneer, Amgad [1 ,2 ]
Taib, Shakirah Mohd [1 ,2 ]
Naseer, Sheraz [3 ]
Ali, Rao Faizan [3 ]
Aziz, Izzatdin Abdul [1 ,2 ]
机构
[1] Univ Teknol PETRONAS, Dept Comp & Informat Sci, Seri Iskandar 32160, Perak, Malaysia
[2] Univ Teknol PETRONAS, Ctr Res Data Sci CERDAS, Seri Iskandar 32610, Perak, Malaysia
[3] Univ Management & Technol, Dept Comp Sci, Lahore 54728, Pakistan
关键词
turbofan engine degradation; data-driven prognostic; deep neural network (DNN); prognostics and health management (PHM); remaining useful life (RUL); uncertainty; CONVOLUTIONAL NEURAL-NETWORK; CONDITION-BASED MAINTENANCE; DIAGNOSTICS; PROGNOSIS; ENSEMBLE; LSTM;
D O I
10.3390/electronics10202453
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurately predicting the remaining useful life (RUL) of the turbofan engine is of great significance for improving the reliability and safety of the engine system. Due to the high dimension and complex features of sensor data in RUL prediction, this paper proposes four data-driven prognostic models based on deep neural networks (DNNs) with an attention mechanism. To improve DNN feature extraction, data are prepared using a sliding time window technique. The raw data collected after normalizing is simply fed into the suggested network, requiring no prior knowledge of prognostics or signal processing and simplifying the proposed method's applicability. In order to verify the RUL prediction ability of the proposed DNN techniques, the C-MAPSS benchmark dataset of the turbofan engine system is validated. The experimental results showed that the developed long short-term memory (LSTM) model with attention mechanism achieved accurate RUL prediction in both scenarios with a high degree of robustness and generalization ability. Furthermore, the proposed model performance outperforms several state-of-the-art prognosis methods, where the LSTM-based model with attention mechanism achieved an RMSE of 12.87 and 11.23 for FD002 and FD003 subset of data, respectively.</p>
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Remaining useful life prognostics based on stochastic degradation modeling: turbofan engine as case study
    Zahra Esfahani
    Karim Salahshoor
    Amir Hooshang Mazinan
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [22] Remaining useful life prognostics based on stochastic degradation modeling: turbofan engine as case study
    Esfahani, Zahra
    Salahshoor, Karim
    Mazinan, Amir Hooshang
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (07)
  • [23] Remaining useful life prediction of turbofan engine based on similarity in multiple time scales
    Xu Y.-H.
    Shu J.-Q.
    Song Y.
    Zheng Y.
    Xia T.-B.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2021, 55 (10): : 1937 - 1947
  • [24] Remaining useful life prediction based on BiLSTM and attention mechanism
    Zhao, Zhihong
    Li, Qing
    Yang, Shaopu
    Li, Lehao
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (06): : 44 - 50
  • [25] A Data-Driven Neural Network Approach for Remaining Useful Life Prediction
    Yan, Jihong
    Guo, Chaozhong
    Wang, Xing
    Zhao, Debin
    ADVANCED DESIGN AND MANUFACTURE III, 2011, 450 : 544 - 547
  • [26] A Data-driven Approach for Remaining Useful Life Prediction of Aircraft Engines
    Zheng, Caifeng
    Liu, Weirong
    Chen, Bin
    Gao, Dianzhu
    Cheng, Yijun
    Yang, Yingze
    Zhang, Xiaoyong
    Li, Shuo
    Huang, Zhiwu
    Peng, Jun
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 184 - 189
  • [27] A data-driven approach for health status assessment and remaining useful life prediction of aero-engine
    De Giorgi, M. G.
    Menga, N.
    Mothakani, A.
    Ficarella, A.
    12TH EASN INTERNATIONAL CONFERENCE ON "INNOVATION IN AVIATION & SPACE FOR OPENING NEW HORIZONS", 2023, 2526
  • [28] Remaining Useful Life Prediction of an Aircraft Turbofan Engine Using Deep Layer Recurrent Neural Networks
    Thakkar, Unnati
    Chaoui, Hicham
    ACTUATORS, 2022, 11 (03)
  • [29] Remaining useful life estimation of turbofan engine based on selective ensemble of deep neural networks
    Han D.-Y.
    Lin Z.-Y.
    Zheng Y.
    Zheng M.-M.
    Xia T.-B.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (11): : 2109 - 2118+2214