EEG-based Cross-subject Mental Fatigue Recognition

被引:30
|
作者
Liu, Yisi [1 ]
Lan, Zirui [1 ,2 ]
Cui, Jian [1 ,2 ]
Sourina, Olga [1 ,2 ]
Muller-Wittig, Wolfgang [1 ,2 ]
机构
[1] Fraunhofer Singapore, Singapore, Singapore
[2] Nanyang Technol Univ, Singapore, Singapore
来源
2019 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW) | 2019年
基金
新加坡国家研究基金会;
关键词
Cross subject fatigue recognition; EEG; transfer learning; domain adaptation; deep learning; DROWSINESS DETECTION;
D O I
10.1109/CW.2019.00048
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Mental fatigue is common at work places, and it can lead to decreased attention, vigilance and cognitive performance, which is dangerous in the situations such as driving, vessel maneuvering, etc. By directly measuring the neurophysiological activities happening in the brain, electroencephalography (EEG) signal can be used as a good indicator of mental fatigue. A classic EEG-based brain state recognition system requires labeled data from the user to calibrate the classifier each time before the use. For fatigue recognition, we argue that it is not practical to do so since the induction of fatigue state is usually long and weary. It is desired that the system can be calibrated using readily available fatigue data, and be applied to a new user with adequate recognition accuracy. In this paper, we explore performance of cross-subject fatigue recognition algorithms using the recently published EEG dataset labeled with two levels of fatigue. We evaluate three categories of classification method: classic classifier such as logistic regression, transfer learning-enabled classifier using transfer component analysis, and deep-learning based classifier such as EEGNet. Our results show that transfer learning-enabled classifier can outperform the other two for cross-subject fatigue recognition on a consistent basis. Specifically, transfer component analysis (TCA) improves the cross-subject recognition accuracy to 72.70 % that is higher than using just logistic regression (LR) by 9.08 % and EEGNet by 8.72 - 12.86 %.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 50 条
  • [41] Cross-Subject Channel Selection Using Modified Relief and Simplified CNN-Based Deep Learning for EEG-Based Emotion Recognition
    Farokhah, Lia
    Sarno, Riyanarto
    Fatichah, Chastine
    IEEE ACCESS, 2023, 11 : 110136 - 110150
  • [42] Multisource Transfer Learning for Cross-Subject EEG Emotion Recognition
    Li, Jinpeng
    Qiu, Shuang
    Shen, Yuan-Yuan
    Liu, Cheng-Lin
    He, Huiguang
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3281 - 3293
  • [43] Subject Adaptive EEG-Based Visual Recognition
    Lee, Pilhyeon
    Hwang, Sunhee
    Jeon, Seogkyu
    Byun, Hyeran
    PATTERN RECOGNITION, ACPR 2021, PT II, 2022, 13189 : 322 - 334
  • [44] EEG Feature Selection for Emotion Recognition Based on Cross-subject Recursive Feature Elimination
    Zhang, Wei
    Yin, Zhong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6256 - 6261
  • [45] Cross-Subject Emotion Recognition Based on Domain Similarity of EEG Signal Transfer Learning
    Ma, Yuliang
    Zhao, Weicheng
    Meng, Ming
    Zhang, Qizhong
    She, Qingshan
    Zhang, Jianhai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 936 - 943
  • [46] Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
    Zuo, Xin
    Zhang, Chi
    Hamalainen, Timo
    Gao, Hanbing
    Fu, Yu
    Cong, Fengyu
    ENTROPY, 2022, 24 (09)
  • [47] Joint EEG Feature Transfer and Semisupervised Cross-Subject Emotion Recognition
    Peng, Yong
    Liu, Honggang
    Kong, Wanzeng
    Nie, Feiping
    Lu, Bao-Liang
    Cichocki, Andrzej
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (07) : 8104 - 8115
  • [48] Contrastive Learning of Subject-Invariant EEG Representations for Cross-Subject Emotion Recognition
    Shen, Xinke
    Liu, Xianggen
    Hu, Xin
    Zhang, Dan
    Song, Sen
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 2496 - 2511
  • [49] Hybrid transfer learning strategy for cross-subject EEG emotion recognition
    Lu, Wei
    Liu, Haiyan
    Ma, Hua
    Tan, Tien-Ping
    Xia, Lingnan
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [50] Label-Based Alignment Multi-Source Domain Adaptation for Cross-Subject EEG Fatigue Mental State Evaluation
    Zhao, Yue
    Dai, Guojun
    Borghini, Gianluca
    Zhang, Jiaming
    Li, Xiufeng
    Zhang, Zhenyan
    Arico, Pietro
    Di Flumeri, Gianluca
    Babiloni, Fabio
    Zeng, Hong
    FRONTIERS IN HUMAN NEUROSCIENCE, 2021, 15