Multi-scale learning based segmentation of glands in digital colonrectal pathology images

被引:7
|
作者
Gao, Yi [1 ,2 ,3 ]
Liu, William [4 ]
Arjun, Shipra [5 ]
Zhu, Liangjia
Ratner, Vadim
Kurc, Tahsin [1 ,3 ]
Saltz, Joel [1 ,3 ]
Tannenbaum, Allen [1 ,2 ,3 ]
机构
[1] SUNY Stony Brook, Dept Biomed Informat, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[4] Upper Sch Buckingham Browne & Nichols, Cambridge, MA USA
[5] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA
来源
关键词
digital pathology; gland segmentation; texture; dictionary learning;
D O I
10.1117/12.2216790
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Multi-scale and Cross-scale Contrastive Learning for Semantic Segmentation
    Pissas, Theodoros
    Ravasio, Claudio S.
    Da Cruz, Lyndon
    Bergeles, Christos
    COMPUTER VISION, ECCV 2022, PT XXIX, 2022, 13689 : 413 - 429
  • [42] Segmentation of Nuclei in Digital Pathology Images
    Guo, Peifang
    Evans, Alan
    Bhattacharya, Prabir
    2016 IEEE 15TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), 2016, : 547 - 550
  • [43] Forgery Detection in Digital Images by Multi-Scale Noise Estimation
    Gardella, Marina
    Muse, Pablo
    Morel, Jean-Michel
    Colom, Miguel
    JOURNAL OF IMAGING, 2021, 7 (07)
  • [44] Multi-scale digital soil mapping with deep learning
    Thorsten Behrens
    Karsten Schmidt
    Robert A. MacMillan
    Raphael A. Viscarra Rossel
    Scientific Reports, 8
  • [45] Multi-scale digital soil mapping with deep learning
    Behrens, Thorsten
    Schmidt, Karsten
    MacMillan, Robert A.
    Rossel, Raphael A. Viscarra
    SCIENTIFIC REPORTS, 2018, 8
  • [46] Multi-Scale Context Aggregation for Semantic Segmentation of Remote Sensing Images
    Zhang, Jing
    Lin, Shaofu
    Ding, Lei
    Bruzzone, Lorenzo
    REMOTE SENSING, 2020, 12 (04)
  • [47] MULTI-SCALE SEGMENTATION IN CHANGE DETECTION FOR URBAN HIGH RESOLUTION IMAGES
    Zhang, Junping
    Mu, Chunfang
    Chen, Hao
    Zhang, Ye
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 209 - 212
  • [48] Semantic Segmentation on Remote Sensing Images with Multi-Scale Feature Fusion
    Zhang J.
    Jin Q.
    Wang H.
    Da C.
    Xiang S.
    Pan C.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (09): : 1509 - 1517
  • [49] Semantic image segmentation using fully convolutional neural networks with multi-scale images and multi-scale dilated convolutions
    Duc My Vo
    Lee, Sang-Woong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (14) : 18689 - 18707
  • [50] Semantic image segmentation using fully convolutional neural networks with multi-scale images and multi-scale dilated convolutions
    Duc My Vo
    Sang-Woong Lee
    Multimedia Tools and Applications, 2018, 77 : 18689 - 18707