Multi-scale learning based segmentation of glands in digital colonrectal pathology images

被引:7
|
作者
Gao, Yi [1 ,2 ,3 ]
Liu, William [4 ]
Arjun, Shipra [5 ]
Zhu, Liangjia
Ratner, Vadim
Kurc, Tahsin [1 ,3 ]
Saltz, Joel [1 ,3 ]
Tannenbaum, Allen [1 ,2 ,3 ]
机构
[1] SUNY Stony Brook, Dept Biomed Informat, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[4] Upper Sch Buckingham Browne & Nichols, Cambridge, MA USA
[5] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA
来源
关键词
digital pathology; gland segmentation; texture; dictionary learning;
D O I
10.1117/12.2216790
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Multi-scale contrast based skin lesion segmentation in digital images
    Filali, Idir
    Belkadi, Malika
    OPTIK, 2019, 185 : 794 - 811
  • [2] Coronary artery segmentation in CCTA images based on multi-scale feature learning
    Xu, Bu
    Yang, Jinzhong
    Hong, Peng
    Fan, Xiaoxue
    Sun, Yu
    Zhang, Libo
    Yang, Benqiang
    Xu, Lisheng
    Avolio, Alberto
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2024, 32 (04) : 973 - 991
  • [3] Multi-Scale Task Multiple Instance Learning for the Classification of Digital Pathology Images with Global Annotations
    Marini, Niccolo
    Otalora, Sebastian
    Ciompi, Francesco
    Silvello, Gianmaria
    Marchesin, Stefano
    Vatrano, Simona
    Buttafuoco, Genziana
    Atzori, Manfredo
    Mueller, Henning
    MICCAI WORKSHOP ON COMPUTATIONAL PATHOLOGY, VOL 156, 2021, 156 : 170 - +
  • [4] Efficient Nucleus Detection in Digital Pathology Images using Multi-task and Multi-scale Instance Segmentation Network
    Sun, Muyi
    Dang, Hao
    Zhang, GuanHong
    Yao, Zeyi
    Zhou, Xiaoguang
    Qing, Chang
    2019 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2019, : 1 - 6
  • [5] Accurate Gastric Cancer Segmentation in Digital Pathology Images Using Deformable Convolution and Multi-Scale Embedding Networks
    Sun, Muyi
    Zhang, Guanhong
    Dang, Hao
    Qi, Xingqun
    Zhou, Xiaoguang
    Chang, Qing
    IEEE ACCESS, 2019, 7 : 75530 - 75541
  • [6] Multi-scale classification based lesion segmentation for dermoscopic images
    Abedini, Mani
    Codella, Noel
    Chakravorty, Rajib
    Garnavi, Rahil
    Gutman, David
    Helba, Brian
    Smith, John R.
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 1361 - 1364
  • [7] Multi-scale graph learning for ovarian tumor segmentation from CT images
    Liu, Zihang
    Zhao, Chunhui
    Lu, Yan
    Jiang, Yu
    Yan, Jingtian
    NEUROCOMPUTING, 2022, 512 : 398 - 407
  • [8] Learning to Aggregate Multi-Scale Context for Instance Segmentation in Remote Sensing Images
    Liu, Ye
    Li, Huifang
    Hu, Chao
    Luo, Shuang
    Luo, Yan
    Chen, Chang Wen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 15
  • [9] Multi-scale graph learning for ovarian tumor segmentation from CT images
    Liu, Zihang
    Zhao, Chunhui
    Lu, Yan
    Jiang, Yu
    Yan, Jingtian
    Neurocomputing, 2022, 512 : 398 - 407
  • [10] A Segmentation Algorithm of Colonoscopy Images Based on Multi-Scale Feature Fusion
    Yu, Jing
    Li, Zhengping
    Xu, Chao
    Feng, Bo
    ELECTRONICS, 2022, 11 (16)