Entropy generation analysis of cylindrical heat pipe using nanofluid

被引:40
|
作者
Ghanbarpour, Morteza [1 ]
Khodabandeh, Rahmatollah [1 ]
机构
[1] Royal Inst Technol, Dept Energy Technol, SE-10044 Stockholm, Sweden
关键词
Heat pipe; Nanofluid; Thermodynamics; Entropy generation; Thermal resistance; RHEOLOGICAL BEHAVIOR; THERMAL-CONDUCTIVITY; PERFORMANCE; FLOW; NANOPARTICLES; EVAPORATION;
D O I
10.1016/j.tca.2015.04.028
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal performance of cylindrical heat pipe with nanofluid is studied based on the laws of thermodynamics. The objective of the present work is to investigate nanofluids effect on different sources of entropy generation in heat pipe caused by heat transfer between hot and cold reservoirs and also frictional losses and pressure drop in the liquid and vapor flow along heat pipe. An analytical study was performed to formulate all sources of entropy generation and the predicted results are compared with experimental ones. Cylindrical miniature grooved heat pipes of 250 mm length and 6.35 mm outer diameter were fabricated and tested with distilled water and water based TiO2 and Al2O3 nanofluids at different concentrations as working fluids. Analytical and experimental results revealed that the entropy generation in heat pipes decreases when nanofluids are used as working fluids instead of basefluid which results in improved thermal performance of the heat pipes with nanofluids. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 50 条
  • [31] An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid
    M. Ghanbarpour
    R. Khodabandeh
    K. Vafai
    Heat and Mass Transfer, 2017, 53 : 973 - 983
  • [32] Heat transfer enhancement using MgO/water nanofluid in heat pipe
    Menlik, Tayfun
    Sozen, Adnan
    Guru, Metin
    Oztas, Sinan
    JOURNAL OF THE ENERGY INSTITUTE, 2015, 88 (03) : 247 - 257
  • [33] An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid
    Ghanbarpour, M.
    Khodabandeh, R.
    Vafai, K.
    HEAT AND MASS TRANSFER, 2017, 53 (03) : 973 - 983
  • [34] Entropy generation analysis of MHD convection flow of hybrid nanofluid in a wavy enclosure with heat generation and thermal radiation
    Hussain, Syed M.
    Parveen, Rujda
    Katbar, Nek Muhammad
    Rehman, Sadique
    Abd-Elmonem, Assmaa
    Abdalla, Nesreen Sirelkhtam Elmki
    Ahmad, Hijaz
    Qureshi, Muhammad Amer
    Jamshed, Wasim
    Amjad, Ayesha
    Ibrahim, Rabha W.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2024, 63 (01)
  • [35] Analysis of the entropy generation in a nanofluid-filled cavity in the presence of magnetic field and uniform heat generation/absorption
    Mahmoudi, Ahmed
    Mejri, Imen
    Abbassi, Mohamed Ammar
    Omri, Ahmed
    JOURNAL OF MOLECULAR LIQUIDS, 2014, 198 : 63 - 77
  • [36] A REVIEW ON NANOFLUID HEAT PIPE
    Shafahi, Maryam
    Anderson, Kevin
    Borna, Ali
    Lee, Michael
    Kim, Alex
    Subandi, Syukrirashiduhakim
    Khansari, Parham
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 8B, 2015,
  • [37] Experimental and numerical analysis of convective heat transfer and entropy generation of graphene/water nanofluid in AEAOT heat exchanger
    Nagaraju, Dora
    Mohammad, Abdul Razack
    Santhosi, B. V. S. R. N.
    Kolla, Narendra Kumar
    Tota, Rakesh Kumar
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2023, 150
  • [38] Flow field, heat transfer and entropy generation of nanofluid in a microchannel using the finite volume method
    Kerdarian M.
    Kianpour E.
    Journal of Computational and Applied Research in Mechanical Engineering, 1600, 8 (02): : 211 - 222
  • [39] Modeling and analysis of peristalsis of hybrid nanofluid with entropy generation
    Hayat, Tasawar
    Nawaz, Sadaf
    Alsaedi, Ahmed
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 143 (02) : 1231 - 1249
  • [40] Modeling and analysis of peristalsis of hybrid nanofluid with entropy generation
    Tasawar Hayat
    Sadaf Nawaz
    Ahmed Alsaedi
    Journal of Thermal Analysis and Calorimetry, 2021, 143 : 1231 - 1249