Experimental and numerical analysis of convective heat transfer and entropy generation of graphene/water nanofluid in AEAOT heat exchanger

被引:5
|
作者
Nagaraju, Dora [1 ]
Mohammad, Abdul Razack [1 ]
Santhosi, B. V. S. R. N. [2 ]
Kolla, Narendra Kumar [1 ]
Tota, Rakesh Kumar [3 ]
机构
[1] GITAM Deemed be Univ, Dept Mech Engn, Visakhapatnam 530045, India
[2] MVGR Coll Engn A, Vizianagaram 535002, India
[3] Indian Maritime Univ, Sch Marine Engn & Technol, Chennai 600119, Tamil Nadu, India
关键词
Alternate elliptical axis oval tube; CFD; Entropy generation; Graphene; water; Transition length; TWISTED OVAL TUBE; CROSS-SECTION PIPES; TRANSFER ENHANCEMENT; FLOW RESISTANCE; PRESSURE-DROP; THERMAL-CONDUCTIVITY; PERFORMANCE; DESIGN; SIMULATION; FLUID;
D O I
10.1016/j.jtice.2023.105022
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Background: Effective utilization of nanofluid's potential and optimal heat exchanger design is paramount in addition to heat transfer enhancement. A novel alternate elliptical tube is fabricated, and graphene nanofluids are chosen to enhance the convective heat transfer characteristics.Methods: The experimental setup is validated with circular pipe results before conducting graphene nanofluid experiments. The finite volume method was adopted to conduct simulation results, and its validation was done with the experimental results. The results of numerical simulations are compared with experiments, and the obtained mean percentage error (MPE) is 1.17%, 8.71%, 8.05% and 8.85% for water, G0.05%, G0.1% and G0.2%, respectively. Experiments are conducted at different mass flow rates and inlet temperatures of nanofluid.Significant findings: The oval tube in an alternate direction improves the secondary flow region with a high swirl, leading to a smaller thermal boundary layer thickness. Nusselt number enhances as an average of 10.3%, 29.2% and 39.1% for graphene nanofluids prepared using weight concentrations 0.05%, 0.1% and 0.2%, respectively, at 80 degrees C. The effect of inlet temperature reveals heat transfer coefficient and Nusselt number increase and 1.57, 1.88, 2.16 times than water is observed for G0.05%, G0.1% and G0.2%, respectively. Pertinent to entropy generation, Bejan number (Be) decrease with graphene nanoparticle concentration; as inlet temperature increases, corresponding fluid friction irreversibilities are observed as 18.4%, 24.6% and 36.4% for G0.05%, G0.1% and G0.2% nanofluids, respectively. The present work caters for the importance of AEAOT design which prompts heat transfer enhancement; indeed, optimization of transition length and aspect ratio are essential to overcome the pressure loss cost.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Experimental Investigate of Heat Transfer for Graphene/Water Nanofluid in Micro Heat Exchanger
    AbdElhafez, S. E.
    Abo-Zahhad, E. M.
    El-Shazly, A. H.
    El-Kady, M. F.
    TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY (TMREES16), 2017, 1814
  • [2] Experimental study on convective heat transfer and entropy generation of carbon black nanofluid turbulent flow in a helical coiled heat exchanger
    Shiravi, Amir Hossein
    Shafiee, Mojtaba
    Firoozzadeh, Mohammad
    Bostani, Hadis
    Bozorgmehrian, Maryam
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 145 (02) : 597 - 607
  • [3] Experimental study on convective heat transfer and entropy generation of carbon black nanofluid turbulent flow in a helical coiled heat exchanger
    Amir Hossein Shiravi
    Mojtaba Shafiee
    Mohammad Firoozzadeh
    Hadis Bostani
    Maryam Bozorgmehrian
    Journal of Thermal Analysis and Calorimetry, 2021, 145 : 597 - 607
  • [4] Numerical Analysis of Convective Heat Transfer in Nanofluid
    Rouboa, A.
    Silva, A.
    Freire, A. J.
    Borges, A.
    Ribeiro, J.
    Silva, P.
    Alexandre, J. L.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 819 - +
  • [5] Experimental investigation of convective heat transfer and pressure drop of SiC/water nanofluid in a shell and tube heat exchanger
    Siamak Karimi
    Mohammad Mahdi Heyhat
    Amir Homayoon Meghdadi Isfahani
    Ali Hosseinian
    Heat and Mass Transfer, 2020, 56 : 2325 - 2331
  • [6] Experimental investigation of convective heat transfer and pressure drop of SiC/water nanofluid in a shell and tube heat exchanger
    Karimi, Siamak
    Heyhat, Mohammad Mahdi
    Isfahan, Amir Homayoon Meghdadi
    Hosseinian, Ali
    HEAT AND MASS TRANSFER, 2020, 56 (08) : 2325 - 2331
  • [7] Experimental Investigation of the Effect of Graphene/Water Nanofluid on the Heat Transfer of a Shell-and-Tube Heat Exchanger
    Zolfalizadeh, Mehrdad
    Heris, Saeed Zeinali
    Pourpasha, Hadi
    Mohammadpourfard, Mousa
    Meyer, Josua P. P.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023
  • [8] Numerical and experimental analysis of performance in a compact plate heat exchanger using graphene oxide/water nanofluid
    Singh, Shiva
    Verma, Piyush
    Ghosh, Subrata Kumar
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2021, 31 (11) : 3356 - 3372
  • [9] An experimental investigation of CuO/water nanofluid heat transfer in geothermal heat exchanger
    Du, Ruiqing
    Jiang, DanDan
    Wang, Yong
    Shah, Kwok Wei
    ENERGY AND BUILDINGS, 2020, 227
  • [10] Synthesis, preparation and the experimental study of silver/water nanofluid to optimize convective heat transfer in a shell and tube heat exchanger
    Nazarzade, Shima
    Ghorbani, Hamid Reza
    Jafarpourgolroudbary, Houman
    INORGANIC AND NANO-METAL CHEMISTRY, 2019, 49 (06) : 173 - 176