Quantum eigenvalue estimation via time series analysis

被引:0
|
作者
Somma, Rolando D. [1 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
来源
NEW JOURNAL OF PHYSICS | 2019年 / 21卷 / 12期
关键词
quantum computing; quantum simulation; phase estimation; MANY-BODY THEORIES; ALGORITHMS;
D O I
10.1088/1367-2630/a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an efficient method for estimating the eigenvalues of a Hamiltonian H from the expectation values of the evolution operator for various times. For a given quantum state rho, our method outputs a list of eigenvalue estimates and approximate probabilities. Each probability depends on the support of rho in those eigenstates of H associated with eigenvalues within an arbitrarily small range. The complexity of our method is polynomial in the inverse of a given precision parameter epsilon, which is the gap between eigenvalue estimates. Unlike the well-known quantum phase estimation algorithm that uses the quantum Fourier transform, our method does not require large ancillary systems, large sequences of controlled operations, or preserving coherence between experiments, and is therefore more attractive for near-term applications. The output of our method can be used to estimate spectral properties of H and other expectation values efficiently, within additive error proportional to epsilon.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] AN APPROACH TO TIME-SERIES ANALYSIS AND ARMA SPECTRAL ESTIMATION
    ZHANG, XD
    TAKEDA, H
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1987, 35 (09): : 1303 - 1313
  • [42] Environmental Time Series Analysis and Estimation with Extended Kalman Filtering
    Metia, Santanu
    Oduro, Seth D.
    Ha, Quang P.
    Duc, Hiep
    2013 FIRST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, MODELLING AND SIMULATION (AIMS 2013), 2013, : 235 - 240
  • [43] Estimation of entropies and dimensions by nonlinear symbolic time series analysis
    Finn, JM
    Goettee, JD
    Toroczkai, Z
    Anghel, M
    Wood, BP
    CHAOS, 2003, 13 (02) : 444 - 456
  • [44] Balance as a Pre-Estimation Test for Time Series Analysis
    Pickup, Mark
    Kellstedt, Paul M.
    POLITICAL ANALYSIS, 2023, 31 (02) : 295 - 304
  • [45] Quantum eigenvalue estimation for irreducible non-negative matrices
    Daskin, Anmer
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2016, 14 (01)
  • [46] Standard Time Estimation of Manual Tasks via Similarity Measure of Unequal Scale Time Series
    Park, Jin Woo
    Kim, Duck Young
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2018, 48 (03) : 241 - 251
  • [47] Hybrid quantum singular spectrum decomposition for time series analysis
    Postema, J. J.
    Bonizzi, P.
    Koekoek, G.
    Westra, R. L.
    Kokkelmans, S. J. J. M. F.
    AVS QUANTUM SCIENCE, 2023, 5 (02):
  • [48] Mask cost analysis via wirite time estimation
    Zhang, Y
    Gray, R
    Chou, S
    Rockwell, B
    Xiao, GM
    Kamberian, H
    Cottle, R
    Wolleben, A
    Progler, C
    Design and Process Integration for Microelectronic Manufacturing III, 2005, 5756 : 313 - 318
  • [49] On the prompt time eigenvalue estimation for subcritical multiplying systems
    Chentre, N.
    Saracco, P.
    Dulla, S.
    Ravetto, P.
    ANNALS OF NUCLEAR ENERGY, 2019, 132 : 172 - 180
  • [50] Time-Dependent Series Variance Estimation via Recurrent Neural Networks
    Nikolaev, Nikolay
    Tino, Peter
    Smirnov, Evgueni
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 : 176 - +