Quantum eigenvalue estimation via time series analysis

被引:0
|
作者
Somma, Rolando D. [1 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
来源
NEW JOURNAL OF PHYSICS | 2019年 / 21卷 / 12期
关键词
quantum computing; quantum simulation; phase estimation; MANY-BODY THEORIES; ALGORITHMS;
D O I
10.1088/1367-2630/a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an efficient method for estimating the eigenvalues of a Hamiltonian H from the expectation values of the evolution operator for various times. For a given quantum state rho, our method outputs a list of eigenvalue estimates and approximate probabilities. Each probability depends on the support of rho in those eigenstates of H associated with eigenvalues within an arbitrarily small range. The complexity of our method is polynomial in the inverse of a given precision parameter epsilon, which is the gap between eigenvalue estimates. Unlike the well-known quantum phase estimation algorithm that uses the quantum Fourier transform, our method does not require large ancillary systems, large sequences of controlled operations, or preserving coherence between experiments, and is therefore more attractive for near-term applications. The output of our method can be used to estimate spectral properties of H and other expectation values efficiently, within additive error proportional to epsilon.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Pattern-Based Analysis of Time Series: Estimation
    Sabeti, Elyas
    Song, Peter X. K.
    Hero, Alfred O.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1236 - 1241
  • [22] Quantum phase estimation for a class of generalized eigenvalue problems
    Parker, Jeffrey B.
    Joseph, Ilon
    PHYSICAL REVIEW A, 2020, 102 (02)
  • [23] Quantum deep neural networks for time series analysis
    Padha, Anupama
    Sahoo, Anita
    QUANTUM INFORMATION PROCESSING, 2024, 23 (06)
  • [24] Stability prediction via parameter estimation from milling time series
    Turner, James D.
    Moore, Samuel A.
    Mann, Brian P.
    JOURNAL OF SOUND AND VIBRATION, 2024, 571
  • [25] PERIODIC COMPONENTS ESTIMATION IN CHRONOBIOLOGICAL TIME SERIES VIA A BAYESIAN APPROACH
    Dumitru, Mircea
    Mohammad-Djafari, Ali
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2246 - 2250
  • [26] Time series analysis and Monte Carlo methods for eigenvalue separation in neutron multiplication problems
    Nease, Brian R.
    Ueki, Taro
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) : 8525 - 8547
  • [27] Nonlinear Time Series Analysis via Neural Networks
    Volna, Eva
    Janosek, Michal
    Kocian, Vaclav
    Kotyrba, Martin
    CHAOS AND COMPLEX SYSTEMS, 2013, : 415 - 418
  • [28] Process pathway inference via time series analysis
    Wiggins, CH
    Nemenman, I
    EXPERIMENTAL MECHANICS, 2003, 43 (03) : 361 - 370
  • [29] ECG anomaly detection via time series analysis
    Chuah, Mooi Choo
    Fu, Fen
    FRONTIERS OF HIGH PERFORMANCE COMPUTING AND NETWORKING - ISPA 2007 WORKSHOPS, 2007, 4743 : 123 - +
  • [30] Time series classification via topological data analysis
    Karan, Alperen
    Kaygun, Atabey
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 183