Quantum eigenvalue estimation via time series analysis

被引:0
|
作者
Somma, Rolando D. [1 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
来源
NEW JOURNAL OF PHYSICS | 2019年 / 21卷 / 12期
关键词
quantum computing; quantum simulation; phase estimation; MANY-BODY THEORIES; ALGORITHMS;
D O I
10.1088/1367-2630/a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an efficient method for estimating the eigenvalues of a Hamiltonian H from the expectation values of the evolution operator for various times. For a given quantum state rho, our method outputs a list of eigenvalue estimates and approximate probabilities. Each probability depends on the support of rho in those eigenstates of H associated with eigenvalues within an arbitrarily small range. The complexity of our method is polynomial in the inverse of a given precision parameter epsilon, which is the gap between eigenvalue estimates. Unlike the well-known quantum phase estimation algorithm that uses the quantum Fourier transform, our method does not require large ancillary systems, large sequences of controlled operations, or preserving coherence between experiments, and is therefore more attractive for near-term applications. The output of our method can be used to estimate spectral properties of H and other expectation values efficiently, within additive error proportional to epsilon.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Quantum eigenvalue estimation via time series analysis
    Somma R.D.
    New Journal of Physics, 2019, 21 (12)
  • [2] Eigenvalue and eigenvector statistics in time series analysis
    Barucca, Paolo
    Kieburg, Mario
    Ossipov, Alexander
    EPL, 2020, 129 (06)
  • [3] Model Agnostic Time Series Analysis via Matrix Estimation
    Agarwal A.
    Jehangir Amjad M.
    Shah D.
    Shen D.
    Performance Evaluation Review, 2019, 47 (01): : 85 - 86
  • [4] Counting by quantum eigenvalue estimation
    Mosca, M
    THEORETICAL COMPUTER SCIENCE, 2001, 264 (01) : 139 - 153
  • [5] On parameter estimation of chaotic systems via symbolic time-series analysis
    Piccardi, Carlo
    CHAOS, 2006, 16 (04)
  • [6] Robust time series estimation via weighted likelihood
    Agostinelli, C
    DEVELOPMENTS IN ROBUST STATISTICS, 2003, : 1 - 16
  • [7] Depth Estimation in Markov Models of Time-series Data via Spectral Analysis
    Jha, Devesh K.
    Srivastav, Abhishek
    Mukherjee, Kushal
    Ray, Asok
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 5812 - 5817
  • [8] deltaGseg: macrostate estimation via molecular dynamics simulations and multiscale time series analysis
    Low, Diana H. P.
    Motakis, Efthymios
    BIOINFORMATICS, 2013, 29 (19) : 2501 - 2502
  • [10] Eigenvalue estimation of differential operators with a quantum algorithm
    Szkopek, T
    Roychowdhury, V
    Yablonovitch, E
    Abrams, DS
    PHYSICAL REVIEW A, 2005, 72 (06):