Predicting Data Space Retrieval Using Probabilistic Hidden Information

被引:1
|
作者
Tchuissang, Gile Narcisse Fanzou [1 ]
Wang, Ning [1 ]
Kuicheu, Nathalie Cindy [1 ]
Siewe, Francois [2 ]
Xu, De [1 ]
Liu, Shuoyan [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Comp & Engn, Beijing, Peoples R China
[2] De Montfort Univ, Fac Technol, Software Technol Res Lab, Leicester LE1 9BH, Leics, England
关键词
information retrieval; probabilistic algorithm; DataSpace;
D O I
10.1587/transinf.E93.D.1991
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses the issues involved in the design of a complete information retrieval system for Data Space based on user relevance probabilistic schemes. First, Information Hidden Model (IHM) is constructed taking into account the users' perception of similarity between documents. The system accumulates feedback from the users and employs it to construct user oriented clusters. IHM allows integrating uncertainty over multiple, interdependent classifications and collectively determines the most likely global assignment. Second, Three different learning strategies are proposed, namely query-related UHH, UHB and UHS (User Hidden Habit, User Hidden Background, and User Hidden keyword Semantics) to closely represent the user mind. Finally, the probability ranking principle shows that optimum retrieval quality can be achieved under certain assumptions. An optimization algorithm to improve the effectiveness of the probabilistic process is developed. We first predict the data sources where the query results could be found. Therefor, compared with existing approaches, our precision of retrieval is better and do not depend on the size and the Data Space heterogeneity.
引用
收藏
页码:1991 / 1994
页数:4
相关论文
共 50 条
  • [31] Data-driven discovery using probabilistic hidden variable models
    Smyth, Padhraic
    [J]. DISCOVERY SCIENCE, PROCEEDINGS, 2006, 4265 : 13 - 13
  • [32] Data-driven discovery using probabilistic hidden variable models
    Smyth, Padhraic
    [J]. ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2006, 4264 : 28 - 28
  • [33] A hidden Markov model information retrieval system
    Miller, DRH
    Leek, T
    Schwartz, RM
    [J]. SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 1999, : 214 - 221
  • [34] A Probabilistic Retrieval Model for Semistructured Data
    Kim, Jinyoung
    Xue, Xiaobing
    Croft, W. Bruce
    [J]. ADVANCES IN INFORMATION RETRIEVAL, PROCEEDINGS, 2009, 5478 : 228 - +
  • [35] Accurately predicting nitrosylated tyrosine sites using probabilistic sequence information
    Rahman, Afrida
    Ahmed, Sabit
    Hasan, Md Al Mehedi
    Ahmad, Shamim
    Dehzangi, Iman
    [J]. GENE, 2022, 826
  • [36] An information retrieval model based on probabilistic network
    Shi, DY
    Qi, ZW
    Fu, C
    You, JY
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING, PROCEEDINGS, 2004, : 423 - 426
  • [37] A PROBABILISTIC INFERENCE MODEL FOR INFORMATION-RETRIEVAL
    WONG, SKM
    YAO, YY
    [J]. INFORMATION SYSTEMS, 1991, 16 (03) : 301 - 321
  • [38] A NEURAL NETWORK FOR PROBABILISTIC INFORMATION-RETRIEVAL
    KWOK, KL
    [J]. PROCEEDINGS OF THE TWELFTH ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 1989, 23 : 21 - 30
  • [39] ON MODELING INFORMATION-RETRIEVAL WITH PROBABILISTIC INFERENCE
    WONG, SKM
    YAO, YY
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 1995, 13 (01) : 38 - 68
  • [40] A NETWORK APPROACH TO PROBABILISTIC INFORMATION-RETRIEVAL
    KWOK, KL
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 1995, 13 (03) : 324 - 353