Predicting Data Space Retrieval Using Probabilistic Hidden Information

被引:1
|
作者
Tchuissang, Gile Narcisse Fanzou [1 ]
Wang, Ning [1 ]
Kuicheu, Nathalie Cindy [1 ]
Siewe, Francois [2 ]
Xu, De [1 ]
Liu, Shuoyan [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Comp & Engn, Beijing, Peoples R China
[2] De Montfort Univ, Fac Technol, Software Technol Res Lab, Leicester LE1 9BH, Leics, England
关键词
information retrieval; probabilistic algorithm; DataSpace;
D O I
10.1587/transinf.E93.D.1991
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses the issues involved in the design of a complete information retrieval system for Data Space based on user relevance probabilistic schemes. First, Information Hidden Model (IHM) is constructed taking into account the users' perception of similarity between documents. The system accumulates feedback from the users and employs it to construct user oriented clusters. IHM allows integrating uncertainty over multiple, interdependent classifications and collectively determines the most likely global assignment. Second, Three different learning strategies are proposed, namely query-related UHH, UHB and UHS (User Hidden Habit, User Hidden Background, and User Hidden keyword Semantics) to closely represent the user mind. Finally, the probability ranking principle shows that optimum retrieval quality can be achieved under certain assumptions. An optimization algorithm to improve the effectiveness of the probabilistic process is developed. We first predict the data sources where the query results could be found. Therefor, compared with existing approaches, our precision of retrieval is better and do not depend on the size and the Data Space heterogeneity.
引用
收藏
页码:1991 / 1994
页数:4
相关论文
共 50 条
  • [21] Music Information Retrieval for Polyphonic Signals using Hidden Markov Model
    Chithra, S.
    Sinith, M. S.
    Gayathri, A.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES, ICICT 2014, 2015, 46 : 381 - 387
  • [22] ON RELEVANCE, PROBABILISTIC INDEXING AND INFORMATION RETRIEVAL
    MARON, ME
    KUHNS, JL
    [J]. JOURNAL OF THE ACM, 1960, 7 (03) : 216 - 244
  • [23] Predicting information retrieval performance
    Losee, Robert M.
    [J]. Synthesis Lectures on Information Concepts, Retrieval, and Services, 2019, 10 (04): : 1 - 79
  • [24] Information retrieval, imaging and probabilistic logic
    Sebastiani, F
    [J]. COMPUTERS AND ARTIFICIAL INTELLIGENCE, 1998, 17 (01): : 35 - 50
  • [25] A probabilistic model for distributed information retrieval
    Baumgarten, C
    [J]. PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 1997, : 258 - 266
  • [26] Using Linked Data for Intelligent Information Retrieval
    Hsu, I-Ching
    Lin, Hsu-Yang
    Yang, Lee Jang
    Huang, Der-Chen
    [J]. 6TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS, AND THE 13TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS, 2012, : 2172 - 2177
  • [27] A probabilistic information retrieval model by document ranking using term dependencies
    You, Hyun-Jo
    Lee, Jung-Jin
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2019, 32 (05) : 763 - 782
  • [28] USING PROBABILISTIC MODELS OF DOCUMENT-RETRIEVAL WITHOUT RELEVANCE INFORMATION
    CROFT, WB
    HARPER, DJ
    [J]. JOURNAL OF DOCUMENTATION, 1979, 35 (04) : 285 - 295
  • [29] A probabilistic justification for using tf × idf term weighting in information retrieval
    Hiemstra D.
    [J]. International Journal on Digital Libraries, 2000, 3 (2) : 131 - 139
  • [30] Augmenting data retrieval with information retrieval techniques by using word similarity
    Gustafson, Nathaniel
    Ng, Yiu-Kai
    [J]. NATURAL LANGUAGE AND INFORMATION SYSTEMS, PROCEEDINGS, 2008, 5039 : 163 - 174