Predicting Data Space Retrieval Using Probabilistic Hidden Information

被引:1
|
作者
Tchuissang, Gile Narcisse Fanzou [1 ]
Wang, Ning [1 ]
Kuicheu, Nathalie Cindy [1 ]
Siewe, Francois [2 ]
Xu, De [1 ]
Liu, Shuoyan [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Comp & Engn, Beijing, Peoples R China
[2] De Montfort Univ, Fac Technol, Software Technol Res Lab, Leicester LE1 9BH, Leics, England
关键词
information retrieval; probabilistic algorithm; DataSpace;
D O I
10.1587/transinf.E93.D.1991
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses the issues involved in the design of a complete information retrieval system for Data Space based on user relevance probabilistic schemes. First, Information Hidden Model (IHM) is constructed taking into account the users' perception of similarity between documents. The system accumulates feedback from the users and employs it to construct user oriented clusters. IHM allows integrating uncertainty over multiple, interdependent classifications and collectively determines the most likely global assignment. Second, Three different learning strategies are proposed, namely query-related UHH, UHB and UHS (User Hidden Habit, User Hidden Background, and User Hidden keyword Semantics) to closely represent the user mind. Finally, the probability ranking principle shows that optimum retrieval quality can be achieved under certain assumptions. An optimization algorithm to improve the effectiveness of the probabilistic process is developed. We first predict the data sources where the query results could be found. Therefor, compared with existing approaches, our precision of retrieval is better and do not depend on the size and the Data Space heterogeneity.
引用
收藏
页码:1991 / 1994
页数:4
相关论文
共 50 条
  • [1] Images with hidden information data set for information retrieval usage
    Pangestu, Peter
    Gunawan, Dennis
    Hansun, Seng
    [J]. DATA IN BRIEF, 2019, 26
  • [2] An information retrieval approach to predicting meteorological data
    Kidron, A.
    Klein, S.T.
    [J]. International Journal of Modelling and Simulation, 2007, 27 (03): : 218 - 225
  • [3] A geometric probabilistic framework for data fusion in information retrieval
    Wu, Shengli
    [J]. 2007 PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2007, : 24 - 31
  • [4] Using Term Location Information to Enhance Probabilistic Information Retrieval
    Liu, Baiyan
    An, Xiangdong
    Huang, Jimmy Xiangji
    [J]. SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2015, : 883 - 886
  • [5] Probabilistic Ranking of Documents Using Vectors in Information Retrieval
    Saini, Balwinder
    Singh, Vikram
    [J]. COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 1, 2015, 31 : 613 - 624
  • [6] Information Retrieval and Data Forecasting via Probabilistic Nodes Combination
    Jakobczak, Dariusz Jacek
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2015, 2015, 9375 : 104 - 112
  • [7] Using probabilistic information in data integration
    Florescu, D
    Koller, D
    Levy, A
    [J]. PROCEEDINGS OF THE TWENTY-THIRD INTERNATIONAL CONFERENCE ON VERY LARGE DATABASES, 1997, : 216 - 225
  • [8] A Probabilistic logic for information retrieval
    van Rijsbergen, CJ
    [J]. ADVANCES IN INFORMATION RETRIEVAL, 2005, 3408 : 1 - 6
  • [9] IMPROVEMENT OF INFORMATION RETRIEVAL SYSTEMS BY USING HIDDEN VERTICAL SEARCH
    Stojkovic, Suzana
    Popovic, Nemanja
    Markovic, Ivica
    [J]. COMPUTING AND INFORMATICS, 2021, 40 (05) : 1008 - 1024
  • [10] Probabilistic information retrieval method based on differential latent semantic index space
    Chen, L
    Tokuda, N
    Nagai, A
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2001, E84D (07) : 910 - 914