Gradient Ti-doping in hematite photoanodes for enhanced photoelectrochemical performance

被引:43
|
作者
Feng, Fan [1 ]
Li, Can [1 ]
Jian, Jie [2 ,3 ]
Li, Fan [2 ,3 ]
Xu, Youxun [2 ,3 ]
Wang, Hongqiang [2 ,3 ]
Jia, Lichao [1 ]
机构
[1] Shaanxi Normal Univ, Shaanxi Key Lab Adv Energy Devices, Key Lab Appl Surface & Colloid Chem,Natl Minist E, Shaanxi Engn Lab Adv Energy Technol,Sch Mat Sci &, 620 West Changan St, Xian 710119, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Mat Sci & Engn, Ctr Nano Energy Mat, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[3] Shaanxi Joint Lab Graphene, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Charge separation; Gradient doping; Photoanode; Fe2O3; Water splitting; CHARGE SEPARATION; NANOROD ARRAYS; WATER; LAYER; HETEROJUNCTION; PASSIVATION; EXTINCTION; CATALYSTS; FILMS;
D O I
10.1016/j.jpowsour.2019.227473
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hematite based photoanode is promising for solar water splitting while suffers from poor charge transport and separation efficiency that limit its practical application. Herein, we demonstrate two types gradient Ti-doped Fe2O3 photoanodes (Fe2O3 -Ti (TiO2 deposited on the top of Fe2O3) and Ti-Fe2O3 (Fe2O3 on the top of TiO2)) to enhance charge transport and separation efficiency. Interestingly, Fe2O3-Ti and Ti-Fe2O3 photoanodes exhibit almost identical PEC performance with photocurrent of 1.50 mA cm(-2) at 1.23 V vs. the reversible hydrogen electrode (RHE). However, the onset potential of Ti-Fe2O3 photoanode displays a cathodic shift of 80 mV comparing with that of Fe2O3-Ti photoanode. Moreover, the charge separation efficiencies on the surface (eta(surface)) for Fe2O3=-Ti and Ti-Fe2O3 can reach up to 96% at the higher potential range from 1.30 to 1.50 V vs. RHE, which are among the top values in the record of hematite-based photoanodes without co-cocatalyst. Further investigation demonstrates the forming of gradient Ti doping is not dependent on the location of the TiO2 layer, but mainly affected by the high annealing temperature. The enlarged contact area between hematite photoanode and the electrolyte, the improved charge separation efficiency, and increased charge carrier density are responsible for the enhanced PEC water splitting.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Influence of Au thickness on the performance of plasmonic enhanced hematite photoanodes
    Akbari, Majed
    Kikhavani, Mohammad-Reza
    Sheshyekania, Keyhan
    Dabirian, Ali
    [J]. RSC ADVANCES, 2013, 3 (39) : 17837 - 17842
  • [32] Ti-doped hematite photoanode prepared by spray pyrolysis method with enhanced photoelectrochemical performance
    Lian, Xiaojuan
    Cheng, Jiang
    Yu, Junsheng
    Li, Lu
    Yang, Xin
    [J]. 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTOELECTRONIC MATERIALS AND DEVICES, 2016, 9686
  • [33] Effect of Ti-doping on the electrochemical performance of sodium vanadium(III) phosphate
    Zhang, Bao
    Zeng, Tao
    Liu, Yi
    Zhang, Jia-feng
    [J]. RSC ADVANCES, 2018, 8 (10): : 5523 - 5531
  • [34] Effect of Ti-doping on the electrochemical performance of lithium vanadium(III) phosphate
    S. M. Stankov
    I. Abrahams
    A. Momchilov
    I. Popov
    T. Stankulov
    A. Trifonova
    [J]. Ionics, 2015, 21 : 1501 - 1508
  • [35] Morphology control of the hematite photoanodes for photoelectrochemical water splitting
    Wang, Yujie
    Rong, Mingyue
    Zheng, Jiandong
    Rui, Zebao
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 31667 - 31677
  • [36] Simultaneous non-metal doping and cocatalyst decoration for efficient photoelectrochemical water splitting on hematite photoanodes
    Wu, Dan
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [37] Simultaneous non-metal doping and cocatalyst decoration for efficient photoelectrochemical water splitting on hematite photoanodes
    Wu, Dan
    Zhang, Zhonghai
    [J]. ELECTROCHIMICA ACTA, 2018, 282 : 48 - 55
  • [38] Effect of Ti-doping on the electrochemical performance of lithium vanadium(III) phosphate
    Stankov, S. M.
    Abrahams, I.
    Momchilov, A.
    Popov, I.
    Stankulov, T.
    Trifonova, A.
    [J]. IONICS, 2015, 21 (06) : 1501 - 1508
  • [39] Inductive effect of Ti-doping in Fe2O3 enhances the photoelectrochemical water oxidation
    Lin, Yumei
    Wang, Yan
    Wang, Hongxia
    Wang, Jingjing
    Wu, Xiaofeng
    Hofmann, Jan P.
    Gorni, Giulio
    O'shea, Victor A. de la Pena A.
    Oropeza, Freddy E.
    Zhang, Kelvin H. L.
    [J]. SCIENCE CHINA-CHEMISTRY, 2023, 66 (07) : 2091 - 2097
  • [40] Inductive effect of Ti-doping in Fe2O3 enhances the photoelectrochemical water oxidation
    Yumei Lin
    Yan Wang
    Hongxia Wang
    Jingjing Wang
    Xiaofeng Wu
    Jan P. Hofmann
    Giulio Gorni
    Victor A. de la Peña O’Shea
    Freddy E. Oropeza
    Kelvin H. L. Zhang
    [J]. Science China Chemistry, 2023, 66 : 2091 - 2097