Ti-doped hematite photoanode prepared by spray pyrolysis method with enhanced photoelectrochemical performance

被引:1
|
作者
Lian, Xiaojuan [1 ]
Cheng, Jiang [1 ]
Yu, Junsheng [1 ,2 ]
Li, Lu [1 ]
Yang, Xin [1 ]
机构
[1] Chongqing Univ Arts & Sci, Res Inst New Mat Technol, Chongqing, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Optoelect Informat, Chengdu, Peoples R China
关键词
hematite; IPCE; doping; water splitting; solar energy; ALPHA-FE2O3; THIN-FILMS; WATER; SEMICONDUCTOR; GROWTH;
D O I
10.1117/12.2241733
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ti-doping hematite photoanode was investigated by easily spray pyrolysis method using self-made spray coating system. Doping with titanium can improve the photoelectrochemical performance of the pure alpha-Fe2O3 thin films. The key point is the effect of Ti doping on improving the conductivity and enhancing charge transfer. When doped with Ti element, V-fb of hematite film shifts negtively about 50 mV, which is good for the hydrogen evolution in the water splitting process. The best IPCE of Ti-doped hematite photoanode reaches 30% under 0.3 V bias at 400nm, ultimately.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Ultrathin Ti-doped hematite photoanode by pyrolysis of ferrocene
    Li, Shipu
    Zhang, Peng
    Song, Xuefeng
    Gao, Lian
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (27) : 14596 - 14603
  • [2] Enhanced photoelectrochemical performance of Ti-doped hematite thin films prepared by the sol-gel method
    Lian, Xiaojuan
    Yang, Xin
    Liu, Shangjun
    Xu, Ying
    Jiang, Chunping
    Chen, Jinwei
    Wang, Ruilin
    [J]. APPLIED SURFACE SCIENCE, 2012, 258 (07) : 2307 - 2311
  • [3] Binary nickel and iron oxide modified Ti-doped hematite photoanode for enhanced photoelectrochemical water splitting
    Xu, Dongyu
    Rui, Yichuan
    Mbah, Vernon Tebong
    Li, Yaogang
    Zhang, Qinghong
    Wang, Hongzhi
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (02) : 873 - 881
  • [4] Ti-doped hematite photoanode with surface phosphate ions functionalization for synergistic enhanced photoelectrochemical water oxidation
    Liu, Guang
    Zhao, Yong
    Li, Na
    Yao, Rui
    Wang, Muheng
    Wu, Yun
    Zhao, Fei
    Li, Jinping
    [J]. ELECTROCHIMICA ACTA, 2019, 307 : 197 - 205
  • [5] Ti doped hematite thin film photoanode with enhanced photoelectrochemical properties
    Xiaojuan Lian
    Jiang Cheng
    Rong Hu
    Hongdong Liu
    Xiaoqing Liao
    Lu Li
    Xin Yang
    [J]. Journal of Materials Science: Materials in Electronics, 2016, 27 : 8935 - 8940
  • [6] Ti doped hematite thin film photoanode with enhanced photoelectrochemical properties
    Lian, Xiaojuan
    Cheng, Jiang
    Hu, Rong
    Liu, Hongdong
    Liao, Xiaoqing
    Li, Lu
    Yang, Xin
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (09) : 8935 - 8940
  • [7] Loading Ni(OH)2 on the Ti-doped hematite photoanode for photoelectrochemical water splitting
    Li, Qian
    Bian, Juncao
    Zhang, Ning
    Ng, Dickon H. L.
    [J]. ELECTROCHIMICA ACTA, 2015, 155 : 383 - 390
  • [8] Plasma-implanted Ti-doped hematite photoanodes with enhanced photoelectrochemical water oxidation performance
    Peng, Yong
    Ruan, Qingdong
    Lam, Chun Ho
    Meng, Fanxu
    Guan, Chung-Yu
    Santoso, Shella Permatasari
    Zou, Xingli
    Yu, Edward T.
    Chu, Paul K.
    Hsu, Hsien-Yi
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 870 (870)
  • [9] Ti-doped hematite films coupled with ultrathin nickel-borate layer as photoanode for enhanced photoelectrochemical water oxidation
    Liu, Changhai
    Zhang, Tingting
    Zhao, Dengxiaojiang
    Zhang, Chao
    Ou, Guofu
    Jin, Haozhe
    Chen, Zhidong
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (06) : 7061 - 7072
  • [10] Ti-doped hematite films coupled with ultrathin nickel-borate layer as photoanode for enhanced photoelectrochemical water oxidation
    Changhai Liu
    Tingting Zhang
    Dengxiaojiang Zhao
    Chao Zhang
    Guofu Ou
    Haozhe Jin
    Zhidong Chen
    [J]. Journal of Materials Science: Materials in Electronics, 2021, 32 : 7061 - 7072