A modified Tikhonov regularization method for a backward heat equation

被引:24
|
作者
Zhao, Zhenyu [1 ,3 ]
Meng, Zehong [2 ]
机构
[1] Guangdong Ocean Univ, Coll Sci, Zhanjiang 524088, Peoples R China
[2] Zhejiang Univ Finance & Econ, Sch Math & Stat, Hangzhou 310018, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
中国博士后科学基金;
关键词
backward heat equation; ill-posed problem; Tikhonov regularization method; discrepancy principle; error estimate; FOURIER REGULARIZATION;
D O I
10.1080/17415977.2011.605885
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, a backward heat conduction problem is considered. A modified Tikhonov regularization method is presented and error estimates are obtained with an a priori strategy and an a posteriori choice rule to find the regularization parameter. Numerical tests show that the proposed method is effective and stable.
引用
收藏
页码:1175 / 1182
页数:8
相关论文
共 50 条
  • [31] A simplified Tikhonov regularization method for determining the heat source
    Yang, Fan
    Fu, Chu-Li
    APPLIED MATHEMATICAL MODELLING, 2010, 34 (11) : 3286 - 3299
  • [32] A modified Tikhonov regularization method based on Hermite expansion for solving the Cauchy problem of the Laplace equation
    Zhao, Zhenyu
    You, Lei
    Meng, Zehong
    OPEN MATHEMATICS, 2020, 18 : 1685 - 1697
  • [33] Shannon wavelet regularization methods for a backward heat equation
    Wang, Jin-Ru
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (09) : 3079 - 3085
  • [34] A modified Tikhonov regularization for unknown source in space fractional diffusion equation
    Yu, Kai
    Gong, Benxue
    Zhao, Zhenyu
    OPEN MATHEMATICS, 2022, 20 (01): : 1309 - 1319
  • [35] Discretized Tikhonov regularization by reproducing kernel Hilbert space for backward heat conduction problem
    Y. C. Hon
    Tomoya Takeuchi
    Advances in Computational Mathematics, 2011, 34 : 167 - 183
  • [36] Discretized Tikhonov regularization by reproducing kernel Hilbert space for backward heat conduction problem
    Hon, Y. C.
    Takeuchi, Tomoya
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2011, 34 (02) : 167 - 183
  • [37] A modified Tikhonov regularization method for parameter estimations of a drawbead model
    Han, X.
    Wang, G.
    Liu, G. P.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2009, 17 (04) : 437 - 449
  • [38] A quasi Tikhonov regularization for a two-dimensional backward heat problem by a fundamental solution
    Cheng, J.
    Liu, J. J.
    INVERSE PROBLEMS, 2008, 24 (06)
  • [39] Regularization and error estimate for the nonlinear backward heat problem using a method of integral equation
    Trong, Dang Duc
    Tuan, Nguyen Huy
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) : 4167 - 4176
  • [40] A modified Tikhonov regularization method for a class of inverse parabolic problems
    Saouli, Nabil
    Zouyed, Fairouz
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2020, 28 (01): : 181 - 204