A modified Tikhonov regularization method for parameter estimations of a drawbead model

被引:5
|
作者
Han, X. [1 ]
Wang, G. [1 ]
Liu, G. P. [1 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Coll Mech & Vehicle Engn, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金; 芬兰科学院;
关键词
drawbead restraining force; Bauschinger effect; incline of the neutral layer; Tikhonov regularization; genetic algorithm; ill-posed inverse problem; GENETIC ALGORITHM;
D O I
10.1080/17415970601121749
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A modified Tikhonov regularization method based on genetic algorithms is presented to inversely estimate the parameters of a drawbead model. The genetic algorithm is employed to optimize the smoothing functional. The input of the model is the measured drawbead restraining forces, the outputs are the incline of the neutral layer and the factor of the Bauschinger effect of the drawbead model. The analytical-numerical method is employed as the forward solver to calculate the drawbead restraining force for the known parameters of the drawbead model. As an application of the presented method, a semicircular drawbead model is considered to act on the sheet with material of A-K steel, based on three cases with different thicknesses. The numerical results of the inverse method proposed demonstrate the feasibility and efficiency for engineering problems.
引用
收藏
页码:437 / 449
页数:13
相关论文
共 50 条
  • [1] A modified Tikhonov regularization method
    Yang, Xiao-Juan
    Wang, Li
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 : 180 - 192
  • [2] A parameter choice method for Tikhonov regularization
    Wu, LM
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2003, 16 : 107 - 128
  • [3] A discretizing Tikhonov regularization method via modified parameter choice rules
    Zhang, Rong
    Xie, Feiping
    Luo, Xingjun
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2024, 32 (04): : 859 - 873
  • [4] On pseudooptimal parameter choice in the Tikhonov regularization method
    Leonov, A.S.
    Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 1995, (01): : 40 - 44
  • [5] A REGULARIZATION PARAMETER FOR NONSMOOTH TIKHONOV REGULARIZATION
    Ito, Kazufumi
    Jin, Bangti
    Takeuchi, Tomoya
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03): : 1415 - 1438
  • [6] A modified Tikhonov regularization method for a backward heat equation
    Zhao, Zhenyu
    Meng, Zehong
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2011, 19 (08) : 1175 - 1182
  • [7] A Kind of a Posteriori Parameter Choices for the Iterated Tikhonov Regularization Method
    贺国强
    Chinese Science Bulletin, 1993, (05) : 356 - 360
  • [8] Synchronous generator parameter identification based on Tikhonov regularization method
    Huang C.
    Yuan H.
    Ma Z.
    Ling M.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2016, 36 (05): : 107 - 111
  • [9] Modified Tikhonov regularization in model updating for damage identification
    Wang, J.
    Yang, Q. S.
    STRUCTURAL ENGINEERING AND MECHANICS, 2012, 44 (05) : 585 - 600
  • [10] A New Method for Determining the Tikhonov Regularization Parameter of Load Identification
    Gao, Wei
    Yu, Kaiping
    NINTH INTERNATIONAL SYMPOSIUM ON PRECISION ENGINEERING MEASUREMENTS AND INSTRUMENTATION, 2015, 9446