ON GRADIENT STRUCTURES FOR MARKOV CHAINS AND THE PASSAGE TO WASSERSTEIN GRADIENT FLOWS

被引:19
|
作者
Disser, Karoline [1 ]
Liero, Matthias [1 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
基金
欧洲研究理事会;
关键词
Wasserstein gradient flow; discrete gradient flow structures; entropy/entropy-dissipation formulation; evolutionary Gamma-convergence; Markov chains; CONVERGENCE; DIFFUSION; EQUATIONS; EVOLUTION;
D O I
10.3934/nhm.2015.10.233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the approximation of Wasserstein gradient structures by their finite-dimensional analog. We show that simple finite-volume discretizations of the linear Fokker-Planck equation exhibit the recently established entropic gradient-flow structure for reversible Markov chains. Then we reprove the convergence of the discrete scheme in the limit of vanishing mesh size using only the involved gradient-flow structures. In particular, we make no use of the linearity of the equations nor of the fact that the Fokker-Planck equation is of second order.
引用
收藏
页码:233 / 253
页数:21
相关论文
共 50 条