Well-posedness of a parabolic moving-boundary problem in the setting of Wasserstein gradient flows
被引:4
|
作者:
Portegies, Jacobus W.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Courant Inst Math Sci, New York, NY 10012 USA
Tech Univ Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, NetherlandsNYU, Courant Inst Math Sci, New York, NY 10012 USA
Portegies, Jacobus W.
[1
,2
]
Peletier, Mark A.
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
Tech Univ Eindhoven, Inst Complex Mol Syst, NL-5600 MB Eindhoven, NetherlandsNYU, Courant Inst Math Sci, New York, NY 10012 USA
Peletier, Mark A.
[2
,3
]
机构:
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
STEFAN PROBLEM;
LUBRICATION APPROXIMATION;
FORMULATION;
EQUATIONS;
D O I:
10.4171/IFB/229
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We develop a gradient-flow framework based on the Wasserstein metric for a parabolic moving-boundary problem that models crystal dissolution and precipitation. In doing so we derive a new weak formulation for this moving-boundary problem and we show that this formulation is well-posed. In addition, we develop a new uniqueness technique based on the framework of gradient flows with respect to the Wasserstein metric. With this uniqueness technique, the Wasserstein framework becomes a complete well-posedness setting for this parabolic moving-boundary problem.