Charge transport mechanisms in organic and microcrystalline silicon field-effect transistors

被引:3
|
作者
Konezny, S. J. [1 ]
Bussac, M. N. [1 ]
Geiser, A. [1 ]
Zuppiroli, L. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Optoelect Mat Mol, STI IMX LOMM, CH-1015 Lausanne, Switzerland
来源
关键词
field-effect transistors; organic semiconductors; microcrystalline silicon; localized states; polarization;
D O I
10.1117/12.733811
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Several organic and inorganic materials have emerged as promising candidates for the active layer of field-effect transistors (FETs) fabricated on flexible substrates. The charge transport models necessary for device optimization in these systems are at different stages of development. The understanding of charge transport in single-crystal and thin-film FETs based on organic materials such as pentacene, rubrene, and other related compounds has advanced considerably in recent years and a clear picture of the relevant transport mechanisms is forming. In contrast, the theoretical description of transport in hydrogenated microcrystalline silicon (mu c-Si:H) is not as well known and the published results and theories are often contradictory. We review the paradigms we feel are useful in describing the cur-rent understanding of transport in organic and mu c-Si:H field-effect transistors. In the case of organic materials these include the polarization and transfer integral fluctuation model [A. Troisi and G. Orlandi, Phys. Rev. Lett. 96, 086601 (2006), J.-D. Picon et al., Phys. Rev. B 75, 235106 (2007)], the Frolich polaron model [I.N. Hulea el al., Nat. Mater. 5, 982 (2006), H. Houilli et al., J. Appl. Phys. 100, 033702 (2006)], and several trapping models [M.E. Gershenson et al., Rev. Mod. Phys. 78, 973 (2006), V. Podzorov et al., Phys Rev. Lett. 95, 226601 (2005)]. Given the heterogeneous composition and structure of microcrystalline silicon thin films, a variety of theories to describe dark conductivity have been applied to mu c-Si:H including those based on percolation theory [H. Overhof et al., J. Non-Cryst. Solids 227-230, 992 (1998)], hopping models [A. Dussan and R. H. Buitrago, J. Appl. Phys. 97, 043711 (2005)], thermionic emission, and tunneling. We give a brief overview of these models and present a fluctuation-induced tunneling model that we are developing to describe charge transport in microcrystalline silicon.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Charge transport in organic field-effect transistors
    Chen, Xu
    Guo, Jianhang
    Peng, Lichao
    Wang, Qijing
    Jiang, Sai
    Li, Yun
    [J]. MATERIALS TODAY ELECTRONICS, 2023, 6
  • [2] Charge transport in polycrystalline organic field-effect transistors
    Horowitz, G
    [J]. POLYCRYSTALLINE SEMICONDUCTORS IV MATERIALS, TECHNOLOGIES AND LARGE AREA ELECTRONICS, 2001, 80-81 : 3 - 13
  • [3] Charge transport in disordered organic field-effect transistors
    Tanase, C
    Blom, PWM
    Meijer, EJ
    de Leeuw, DM
    [J]. ORGANIC AND POLYMERIC MATERIALS AND DEVICES-OPTICAL, ELECTRICAL AND OPTOELECTRONIC PROPERTIES, 2002, 725 : 125 - 129
  • [4] Ambipolar charge transport in organic field-effect transistors
    Smits, Edsger C. P.
    Anthopoulos, Thomas D.
    Setayesh, Sepas
    van Veenendaal, Erik
    Coehoorn, Reinder
    Blom, Paul W. M.
    de Boer, Bert
    de Leeuw, Dago M.
    [J]. PHYSICAL REVIEW B, 2006, 73 (20)
  • [5] Dimensionality of charge transport in organic field-effect transistors
    Sharma, A.
    van Oost, F. W. A.
    Kemerink, M.
    Bobbert, P. A.
    [J]. PHYSICAL REVIEW B, 2012, 85 (23):
  • [6] Electric Field Confinement Effect on Charge Transport in Organic Field-Effect Transistors
    Li, Xiaoran
    Kadashchuk, Andrey
    Fishchuk, Ivan I.
    Smaal, Wiljan T. T.
    Gelinck, Gerwin
    Broer, Dirk J.
    Genoe, Jan
    Heremans, Paul
    Baessler, Heinz
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [7] Charge transport in dual-gate organic field-effect transistors
    Brondijk, J. J.
    Spijkman, M.
    Torricelli, F.
    Blom, P. W. M.
    de Leeuw, D. M.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (02)
  • [8] Charge transport and light emission in bilayer organic field-effect transistors
    Li, Weicong
    Kwok, H. L.
    [J]. THIN SOLID FILMS, 2012, 520 (09) : 3600 - 3604
  • [9] Charge transport properties of carbazole dendrimers in organic field-effect transistors
    Mutkins, Karyn
    Chen, Simon S. Y.
    Aljada, Muhsen
    Powell, Ben J.
    Olsen, Seth
    Burn, Paul L.
    Meredith, Paul
    [J]. ORGANIC FIELD-EFFECT TRANSISTORS X, 2011, 8117
  • [10] Balance of Horizontal and Vertical Charge Transport in Organic Field-Effect Transistors
    Sawatzki, Franz Michael
    Doan, Duy Hai
    Kleemann, Hans
    Liero, Matthias
    Glitzky, Annegret
    Koprucki, Thomas
    Leo, Karl
    [J]. PHYSICAL REVIEW APPLIED, 2018, 10 (03):