Balance of Horizontal and Vertical Charge Transport in Organic Field-Effect Transistors

被引:25
|
作者
Sawatzki, Franz Michael [1 ]
Doan, Duy Hai [2 ]
Kleemann, Hans [1 ]
Liero, Matthias [2 ]
Glitzky, Annegret [2 ]
Koprucki, Thomas [2 ]
Leo, Karl [1 ,3 ]
机构
[1] Tech Univ Dresden, Dresden Integrated Ctr Appl Phys & Photon Mat IAP, Noethnitzer St 61, D-01187 Dresden, Germany
[2] Weierstrass Inst Angew Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
[3] Ctr Advancing Elect Dresden CFAED, Wuerzburger St 46, D-01187 Dresden, Germany
来源
PHYSICAL REVIEW APPLIED | 2018年 / 10卷 / 03期
关键词
D O I
10.1103/PhysRevApplied.10.034069
中图分类号
O59 [应用物理学];
学科分类号
摘要
High-performance organic field-effect transistors (OFETs) are an essential building block for future flexible electronics. Although there has been steady progress in the development of high-mobility organic semiconductors, the performance of lateral state-of-the-art OFETs still falls short, especially with regard to the transition frequency. One candidate to overcome the shortcomings of the lateral OFET is its vertical embodiment, the vertical organic field-effect transistor (VOFET). However, the detailed mechanism of VOFET operation is poorly understood and a matter of discussion. Proposed descriptions of the formation and geometry of the vertical channel vary significantly. In particular, values for lateral depth of the vertical channel reported so far show a large variation. This is an important question for the transistor integration, though, since a channel depth in the micrometer range would severely limit the possible integration density. Here, we investigate charge transport in such VOFETs via drift-diffusion simulations and experimental measurements. We use a (vertical) organic light-emitting transistor [(V)OLET] as a means to map the spatial distribution of charge transport within the vertical channel. Comparing simulation and experiment, we can conclusively describe the operation mechanism which is mainly governed by an accumulation of charges at the dielectric interface and the channel formation directly at the edge of the source electrode. In particular, we quantitatively describe how the channel depth depends on parameters such as gate-source voltage, drain-source voltage, and lateral and vertical mobility. Based on the proposed operation mechanism, we derive an analytical estimation for the lateral dimensions of the channel, helping to predict an upper limit for the integration density of VOFETs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Charge transport in organic field-effect transistors
    Chen, Xu
    Guo, Jianhang
    Peng, Lichao
    Wang, Qijing
    Jiang, Sai
    Li, Yun
    [J]. MATERIALS TODAY ELECTRONICS, 2023, 6
  • [2] Charge transport in polycrystalline organic field-effect transistors
    Horowitz, G
    [J]. POLYCRYSTALLINE SEMICONDUCTORS IV MATERIALS, TECHNOLOGIES AND LARGE AREA ELECTRONICS, 2001, 80-81 : 3 - 13
  • [3] Charge transport in disordered organic field-effect transistors
    Tanase, C
    Blom, PWM
    Meijer, EJ
    de Leeuw, DM
    [J]. ORGANIC AND POLYMERIC MATERIALS AND DEVICES-OPTICAL, ELECTRICAL AND OPTOELECTRONIC PROPERTIES, 2002, 725 : 125 - 129
  • [4] Ambipolar charge transport in organic field-effect transistors
    Smits, Edsger C. P.
    Anthopoulos, Thomas D.
    Setayesh, Sepas
    van Veenendaal, Erik
    Coehoorn, Reinder
    Blom, Paul W. M.
    de Boer, Bert
    de Leeuw, Dago M.
    [J]. PHYSICAL REVIEW B, 2006, 73 (20)
  • [5] Dimensionality of charge transport in organic field-effect transistors
    Sharma, A.
    van Oost, F. W. A.
    Kemerink, M.
    Bobbert, P. A.
    [J]. PHYSICAL REVIEW B, 2012, 85 (23):
  • [6] Anodization for Simplified Processing and Efficient Charge Transport in Vertical Organic Field-Effect Transistors
    Lim, Kyung-Geun
    Guo, Erjuan
    Fischer, Axel
    Miao, Qian
    Leo, Karl
    Kleemann, Hans
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (27)
  • [7] Electric Field Confinement Effect on Charge Transport in Organic Field-Effect Transistors
    Li, Xiaoran
    Kadashchuk, Andrey
    Fishchuk, Ivan I.
    Smaal, Wiljan T. T.
    Gelinck, Gerwin
    Broer, Dirk J.
    Genoe, Jan
    Heremans, Paul
    Baessler, Heinz
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [8] Vertical Organic Field-Effect Transistors
    Liu, Jinyu
    Qin, Zhengsheng
    Gao, Haikuo
    Dong, Huanli
    Zhu, Jia
    Hu, Wenping
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (17)
  • [9] Charge transport in dual-gate organic field-effect transistors
    Brondijk, J. J.
    Spijkman, M.
    Torricelli, F.
    Blom, P. W. M.
    de Leeuw, D. M.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (02)
  • [10] Charge transport and light emission in bilayer organic field-effect transistors
    Li, Weicong
    Kwok, H. L.
    [J]. THIN SOLID FILMS, 2012, 520 (09) : 3600 - 3604