High-performance organic field-effect transistors (OFETs) are an essential building block for future flexible electronics. Although there has been steady progress in the development of high-mobility organic semiconductors, the performance of lateral state-of-the-art OFETs still falls short, especially with regard to the transition frequency. One candidate to overcome the shortcomings of the lateral OFET is its vertical embodiment, the vertical organic field-effect transistor (VOFET). However, the detailed mechanism of VOFET operation is poorly understood and a matter of discussion. Proposed descriptions of the formation and geometry of the vertical channel vary significantly. In particular, values for lateral depth of the vertical channel reported so far show a large variation. This is an important question for the transistor integration, though, since a channel depth in the micrometer range would severely limit the possible integration density. Here, we investigate charge transport in such VOFETs via drift-diffusion simulations and experimental measurements. We use a (vertical) organic light-emitting transistor [(V)OLET] as a means to map the spatial distribution of charge transport within the vertical channel. Comparing simulation and experiment, we can conclusively describe the operation mechanism which is mainly governed by an accumulation of charges at the dielectric interface and the channel formation directly at the edge of the source electrode. In particular, we quantitatively describe how the channel depth depends on parameters such as gate-source voltage, drain-source voltage, and lateral and vertical mobility. Based on the proposed operation mechanism, we derive an analytical estimation for the lateral dimensions of the channel, helping to predict an upper limit for the integration density of VOFETs.