UNIFORM GENERATION OF RANDOM REGULAR GRAPHS

被引:17
|
作者
Gao, Pu [1 ]
Wormald, Nicholas [1 ]
机构
[1] Monash Univ, Sch Math Sci, Monash, Australia
基金
加拿大自然科学与工程研究理事会;
关键词
uniform generation; regular graphs; switching; Markov chain; ASYMPTOTIC ENUMERATION;
D O I
10.1137/15M1052779
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop a new approach for uniform generation of combinatorial objects, and apply it to derive a uniform sampler REG for d-regular graphs. REG can be implemented such that each graph is generated in expected time O(nd(3)), provided that d= o(root n). Our result significantly improves the previously best uniform sampler, which works efficiently only when d= O(n(1/3)), with essentially the same running time for the same d. We also give a linear-time approximate sampler REG*, which generates a random d-regular graph whose distribution differs from the uniform by o(1) in total variation distance, when d= o(root n).
引用
收藏
页码:1395 / 1427
页数:33
相关论文
共 50 条
  • [41] CRITICAL PERCOLATION ON RANDOM REGULAR GRAPHS
    Joos, Felix
    Perarnau, Guillem
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (08) : 3321 - 3332
  • [42] Total domination of random regular graphs
    Duckworth, W.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 33 : 279 - 289
  • [43] On the chromatic number of random regular graphs
    Coja-Oghlan, Amin
    Efthymiou, Charilaos
    Hetterich, Samuel
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 116 : 367 - 439
  • [44] THE ISOPERIMETRIC NUMBER OF RANDOM REGULAR GRAPHS
    BOLLOBAS, B
    EUROPEAN JOURNAL OF COMBINATORICS, 1988, 9 (03) : 241 - 244
  • [45] CONTACT PROCESSES ON RANDOM REGULAR GRAPHS
    Lalley, Steven
    Su, Wei
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 2061 - 2097
  • [46] Small subgraphs of random regular graphs
    Kim, Jeong Han
    Sudakov, Benny
    Vu, Van
    DISCRETE MATHEMATICS, 2007, 307 (15) : 1961 - 1967
  • [47] RAINBOW CONNECTION OF RANDOM REGULAR GRAPHS
    Dudek, Andrzej
    Frieze, Alan M.
    Tsourakakis, Charalampos E.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (04) : 2255 - 2266
  • [48] Majority Model on Random Regular Graphs
    Gartner, Bernd
    Zehmakan, Ahad N.
    LATIN 2018: THEORETICAL INFORMATICS, 2018, 10807 : 572 - 583
  • [49] The chromatic number of random regular graphs
    Achlioptas, D
    Moore, C
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2004, 3122 : 219 - 228
  • [50] Packing edges in random regular graphs
    Beis, M
    Duckworth, W
    Zito, M
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2002, 2002, 2420 : 118 - 130