CRITICAL PERCOLATION ON RANDOM REGULAR GRAPHS

被引:5
|
作者
Joos, Felix [1 ]
Perarnau, Guillem [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
GIANT COMPONENT; DEGREE SEQUENCE; PHASE-TRANSITION; FINITE GRAPHS;
D O I
10.1090/proc/14021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for all d epsilon {3,..., n - 1} the size of the largest component of a random d-regular graph on n vertices around the percolation threshold p-1/(d-1) is Theta(n(2/3)), with high probability. This extends known results for fixed d >= 3 and for d = n - 1, confirming a prediction of Nachmias and Peres on a question of Benjamini. As a corollary, for the largest component of the percolated random d-regular graph, we also determine the diameter and the mixing time of the lazy random walk. In contrast to previous approaches, our proof is based on a simple application of the switching method.
引用
收藏
页码:3321 / 3332
页数:12
相关论文
共 50 条
  • [1] Critical Percolation on Random Regular Graphs
    Nachmias, Asaf
    Peres, Yuval
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2010, 36 (02) : 111 - 148
  • [2] The probability of unusually large components for critical percolation on random d-regular graphs
    De Ambroggio, Umberto
    Roberts, Matthew I.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [3] Competing First Passage Percolation on Random Regular Graphs
    Antunovic, Tonci
    Dekel, Yael
    Mossel, Elchanan
    Peres, Yuval
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2017, 50 (04) : 534 - 583
  • [4] On percolation critical probabilities and unimodular random graphs
    Beringer, Dorottya
    Pete, Gabor
    Timar, Adam
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [5] Characterization of the critical density for percolation in random geometric graphs
    Kong, Zhenning
    Yeh, Edmund M.
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 151 - +
  • [6] Core percolation in random graphs: a critical phenomena analysis
    M. Bauer
    O. Golinelli
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 24 : 339 - 352
  • [7] Core percolation in random graphs: a critical phenomena analysis
    Bauer, M
    Golinelli, O
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2001, 24 (03): : 339 - 352
  • [8] Critical behavior at the localization transition on random regular graphs
    Tikhonov, K. S.
    Mirlin, A. D.
    [J]. PHYSICAL REVIEW B, 2019, 99 (21)
  • [9] On the asymmetry of random regular graphs and random graphs
    Kim, JH
    Sudakov, B
    Vu, VH
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (3-4) : 216 - 224
  • [10] On Quantum Percolation in Finite Regular Graphs
    Bordenave, Charles
    [J]. ANNALES HENRI POINCARE, 2015, 16 (11): : 2465 - 2497