Nonlinear Higher-Order Label Spreading

被引:12
|
作者
Tudisco, Francesco [1 ]
Benson, Austin R. [2 ]
Prokopchik, Konstantin [1 ]
机构
[1] Gran Sasso Sci Inst, Sch Math, I-67100 Laquila, Italy
[2] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
关键词
semi-supervised learning; hypergraphs; Laplacians; label spreading; label propagation; higher-order networks;
D O I
10.1145/3442381.3450035
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Label spreading is a general technique for semi-supervised learning with point cloud or network data, which can be interpreted as a diffusion of labels on a graph. While there are many variants of label spreading, nearly all of them are linear models, where the incoming information to a node is a weighted sum of information from neighboring nodes. Here, we add nonlinearity to label spreading via nonlinear functions involving higher-order network structure, namely triangles in the graph. For a broad class of nonlinear functions, we prove convergence of our nonlinear higher-order label spreading algorithm to the global solution of an interpretable semi-supervised loss function. We demonstrate the efficiency and efficacy of our approach on a variety of point cloud and network datasets, where the nonlinear higher-order model outperforms classical label spreading, hypergraph clustering, and graph neural networks.
引用
收藏
页码:2402 / 2413
页数:12
相关论文
共 50 条
  • [21] Higher-Order Sensitivity Invariants for Nonlinear Networks
    Izydorczyk, J.
    Chojcan, J.
    2008 IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1 AND 2, 2008, : 6 - +
  • [22] Higher-Order Linearization and Regularity in Nonlinear Homogenization
    Scott Armstrong
    Samuel J. Ferguson
    Tuomo Kuusi
    Archive for Rational Mechanics and Analysis, 2020, 237 : 631 - 741
  • [23] Solitons in nonlinear systems with higher-order effects
    Wang, Xiu-Bin
    Han, Bo
    APPLIED MATHEMATICS LETTERS, 2021, 111
  • [24] Higher-Order Linearization and Regularity in Nonlinear Homogenization
    Armstrong, Scott
    Ferguson, Samuel J.
    Kuusi, Tuomo
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 237 (02) : 631 - 741
  • [25] Higher-order nonlinear priors for surface reconstruction
    Tasdizen, T
    Whitaker, R
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (07) : 878 - 891
  • [26] SOME HIGHER-ORDER NONLINEAR EVOLUTION EQUATIONS
    HABERMAN, R
    STUDIES IN APPLIED MATHEMATICS, 1975, 54 (04) : 275 - 282
  • [27] ON HIGHER-ORDER ASYMPTOTIC FACTORIZATION OF NONLINEAR OPERATORS
    MCMORRAN, AG
    COOKE, CH
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1990, 6 (04): : 305 - 312
  • [28] Collapse for the higher-order nonlinear Schrodinger equation
    Achilleos, V.
    Diamantidis, S.
    Frantzeskakis, D. J.
    Horikis, T. P.
    Karachalios, N. I.
    Kevrekidis, P. G.
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 316 : 57 - 68
  • [29] Nonlinear systems and higher-order statistics with applications
    Lii, KS
    SIGNAL PROCESSING, 1996, 53 (2-3) : 165 - 177
  • [30] HIGHER-ORDER BIAS AND MSE OF NONLINEAR ESTIMATORS
    Bao, Yong
    Ullah, Aman
    PAKISTAN JOURNAL OF STATISTICS, 2009, 25 (04): : 587 - 594