Higher-Order Linearization and Regularity in Nonlinear Homogenization

被引:6
|
作者
Armstrong, Scott [1 ]
Ferguson, Samuel J. [1 ]
Kuusi, Tuomo [2 ]
机构
[1] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] Univ Helsinki, Dept Math & Stat, POB 68,Gustaf Hallstromin Katu 2, FIN-00014 Helsinki, Finland
基金
欧洲研究理事会; 芬兰科学院;
关键词
STOCHASTIC HOMOGENIZATION; ELLIPTIC-EQUATIONS; BOUNDS;
D O I
10.1007/s00205-020-01519-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove large-scale C regularity for solutions of nonlinear elliptic equations with random coefficients, thereby obtaining a version of the statement of Hilbert's 19th problem in the context of homogenization. The analysis proceeds by iteratively improving three statements together: (i) the regularity of the homogenized Lagrangian L, (ii) the commutation of higher-order linearization and homogenization, and (iii) large-scale C0,1-type regularity for higher-order linearization errors. We consequently obtain a quantitative estimate on the scaling of linearization errors, a Liouville-type theorem describing the polynomially-growing solutions of the system of higher-order linearized equations, and an explicit (heterogenous analogue of the) Taylor series for an arbitrary solution of the nonlinear equations-with the remainder term optimally controlled. These results give a complete generalization to the nonlinear setting of the large-scale regularity theory in homogenization for linear elliptic equations.
引用
收藏
页码:631 / 741
页数:111
相关论文
共 50 条
  • [1] Higher-Order Linearization and Regularity in Nonlinear Homogenization
    Scott Armstrong
    Samuel J. Ferguson
    Tuomo Kuusi
    [J]. Archive for Rational Mechanics and Analysis, 2020, 237 : 631 - 741
  • [2] Computational homogenization of higher-order continua
    Schmidt, Felix
    Krueger, Melanie
    Keip, Marc-Andre
    Hesch, Christian
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (11) : 2499 - 2529
  • [3] HIGHER-ORDER STRUCTURE IN REGULARITY DETECTION
    WAGEMANS, J
    VANGOOL, L
    SWINNEN, V
    VANHOREBEEK, J
    [J]. VISION RESEARCH, 1993, 33 (08) : 1067 - 1088
  • [4] Linearization and Higher-Order Approximations: How Good are They?
    Atolia, Manoj
    Awad, Bassam
    Marquis, Milton
    [J]. COMPUTATIONAL ECONOMICS, 2011, 38 (01) : 1 - 31
  • [5] Homogenization, Linearization, and Large-Scale Regularity for Nonlinear Elliptic Equations
    Armstrong, Scott
    Ferguson, Samuel J.
    Kuusi, Tuomo
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (02) : 286 - 365
  • [6] Weighted regularity estimates for a class of higher-order nonlinear parabolic and elliptic systems
    Bui, The Anh
    Duong, Xuan Thinh
    Xuan Truong Le
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 180 : 184 - 207
  • [7] Estimates in homogenization of higher-order elliptic operators
    Pastukhova, Svetlana E.
    [J]. APPLICABLE ANALYSIS, 2016, 95 (07) : 1449 - 1466
  • [8] Higher-order asymptotic homogenization for piezoelectric composites
    He, Zhelong
    Liu, Jie
    Chen, Qiang
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 264
  • [10] Recursive Linearization of Higher-Order for Power System Models
    Hernandez-Ortega, M. A.
    Messina, A. R.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (02) : 1206 - 1216