Higher-Order Linearization and Regularity in Nonlinear Homogenization

被引:6
|
作者
Armstrong, Scott [1 ]
Ferguson, Samuel J. [1 ]
Kuusi, Tuomo [2 ]
机构
[1] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] Univ Helsinki, Dept Math & Stat, POB 68,Gustaf Hallstromin Katu 2, FIN-00014 Helsinki, Finland
基金
欧洲研究理事会; 芬兰科学院;
关键词
STOCHASTIC HOMOGENIZATION; ELLIPTIC-EQUATIONS; BOUNDS;
D O I
10.1007/s00205-020-01519-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove large-scale C regularity for solutions of nonlinear elliptic equations with random coefficients, thereby obtaining a version of the statement of Hilbert's 19th problem in the context of homogenization. The analysis proceeds by iteratively improving three statements together: (i) the regularity of the homogenized Lagrangian L, (ii) the commutation of higher-order linearization and homogenization, and (iii) large-scale C0,1-type regularity for higher-order linearization errors. We consequently obtain a quantitative estimate on the scaling of linearization errors, a Liouville-type theorem describing the polynomially-growing solutions of the system of higher-order linearized equations, and an explicit (heterogenous analogue of the) Taylor series for an arbitrary solution of the nonlinear equations-with the remainder term optimally controlled. These results give a complete generalization to the nonlinear setting of the large-scale regularity theory in homogenization for linear elliptic equations.
引用
收藏
页码:631 / 741
页数:111
相关论文
共 50 条
  • [41] A REGULARITY THEORY FOR VARIATIONAL-PROBLEMS WITH HIGHER-ORDER DERIVATIVES
    CLARKE, FH
    VINTER, RB
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 320 (01) : 227 - 251
  • [42] On regularity conditions in higher-order state-constrained control
    Karamzin, D. Yu.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 452
  • [43] The regularity of the multiple higher-order poles solitons of the NLS equation
    Zhang, Yongshuai
    Tao, Xiangxing
    Yao, Tengteng
    He, Jingsong
    [J]. STUDIES IN APPLIED MATHEMATICS, 2020, 145 (04) : 812 - 827
  • [44] Higher-order boundary regularity estimates for nonlocal parabolic equations
    Ros-Oton, Xavier
    Vivas, Hernan
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (05)
  • [45] Nonlinear acoustics in higher-order approximation: Comment
    Mitri, Farid G.
    [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57 (08) : 1715 - 1716
  • [46] Dynamics of a Higher-Order Nonlinear Difference Equation
    Tang, Guo-Mei
    Hu, Lin-Xia
    Jia, Xiu-Mei
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2010, 2010
  • [47] HIGHER-ORDER NONLINEAR DEGENERATE PARABOLIC EQUATIONS
    BERNIS, F
    FRIEDMAN, A
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (01) : 179 - 206
  • [48] Nonlinear higher-order polariton topological insulator
    Zhang, Yiqi
    Kartashov, Y., V
    Torner, L.
    Li, Yongdong
    Ferrando, A.
    [J]. OPTICS LETTERS, 2020, 45 (17) : 4710 - 4713
  • [49] Oscillation of higher-order nonlinear difference equations
    Grace, SR
    Lalli, BS
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2005, 41 (4-5) : 485 - 491
  • [50] Nonlinear turbo codes for higher-order modulations
    Griot, Miguel
    Casado, Andres I. Vila
    Wesel, Richard
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, PROCEEDINGS, VOLS 1-13, 2008, : 1209 - 1213