Enumeration and construction of additive cyclic codes over Galois rings

被引:7
|
作者
Cao, Yonglin [1 ]
Gao, Jian [2 ,3 ]
Fu, Fang-Wei [2 ,3 ]
Cao, Yuan [4 ]
机构
[1] Shandong Univ Technol, Sch Sci, Zibo 255091, Shandong, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Additive cyclic code; Galois ring; Linear code; Dual code; Trace inner product; Self-dual code; Quasi-cyclic code; CLASSIFICATION;
D O I
10.1016/j.disc.2015.01.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R = GR(p(epsilon), l) be a Galois ring of characteristic p(epsilon) and cardinality p(epsilon l), where p and l are prime integers. First, we give a canonical form decomposition for additive cyclic codes over R. This decomposition is used to construct additive cyclic codes and count the number of such codes, respectively. Then we give the trace dual code for each additive cyclic code over R from its canonical form decomposition and linear codes of length I over some extension Galois rings of Zp(epsilon). (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:922 / 937
页数:16
相关论文
共 50 条
  • [21] Primitive idempotents of irreducible cyclic codes and self-dual cyclic codes over Galois rings
    Wu, Yansheng
    Yue, Qin
    Li, Fengwei
    [J]. DISCRETE MATHEMATICS, 2018, 341 (06) : 1755 - 1767
  • [22] Construction of MDS self-dual codes over Galois rings
    Kim, Jon-Lark
    Lee, Yoonjin
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2007, 45 (02) : 247 - 258
  • [23] Construction of MDS self-dual codes over Galois rings
    Jon-Lark Kim
    Yoonjin Lee
    [J]. Designs, Codes and Cryptography, 2007, 45 : 247 - 258
  • [24] GALOIS LCD CODES OVER RINGS
    Liu, Zihui
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (01) : 91 - 104
  • [25] Additive cyclic codes over finite commutative chain rings
    Martinez-Moro, Edgar
    Otal, Kamil
    Ozbudak, Ferruh
    [J]. DISCRETE MATHEMATICS, 2018, 341 (07) : 1873 - 1884
  • [26] ON THE HAMMING WEIGHT OF REPEATED ROOT CYCLIC AND NEGACYCLIC CODES OVER GALOIS RINGS
    Lopez-Permouth, Sergio R.
    Szabo, Steve
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2009, 3 (04) : 409 - 420
  • [27] Skew constacyclic codes over Galois rings
    Boucher, Delphine
    Sole, Patrick
    Ulmer, Felix
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (03) : 273 - 292
  • [28] Decoding of linear codes over Galois rings
    Babu, NS
    Zimmermann, KH
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) : 1599 - 1603
  • [29] Some results on codes over Galois rings
    Tapia-Recillas, Horacio
    [J]. 2006 IEEE Information Theory Workshop, 2006, : 112 - 115
  • [30] A mass formula for cyclic codes over Galois rings of characteristic p3
    Kim, Boran
    Lee, Yoonjin
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2018, 52 : 214 - 242